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1. INTRODUCTION

Although Navier-Stokes solutions of aerodynamic bodies have become

fairly routine, their use is somewhat restrictive when highly accurate solu-

tions within the boundary layer are being sought. The grid point distributions

used here have to be relatively coarse due to limitations in computer

memory and speed. In addition, the necessity of having to add enthalpy

damping and other smoothing procedures further reduce the accuracy of the

solution. In contrast, the accuracy requirement of a three-dimensional stabil-

ity analysis indicates a finer grid point distribution and an algorithm that is

reasonably fast and efficient. Solution procedures for the three-dimensional

boundary layer equations are important in this context.

Numerical methods to solve the two-dimensional boundary layer flow

have been in wide use for design and analysis for the last 30 years. How-

ever, a corresponding development of three-dimensional boundary layer

analysis methods has not occurred on a large scale. The few 3D boundary

layer programs in existence are either proprietary or not used widely due to

their restrictive application. With the current emphasis on laminar flow con-

trol for wings and fuselages, there is a need for an accurate, efficient and

well-documented three-dimensional boundary layer procedure. The present

effort is an attempt at fulfilling this need.

The theory and numerical procedures used in 2D flow cannot readily be

extended to 3D flow due to the mathematical character of the governing

equations and their initial, boundary and geometric requirements. The

hyperbolic character of the 3D boundary layer equations implies that there

are regions of influence and dependence that must be correctly treated

when solving on each stream surface plane. The initial data plane to start

the calculation is obtained by solving a special subset of the 3D boundary

layer equations applicable at the stagnation point or attachment line, from

where the boundary layer originates. In addition, a side boundary such as a

symmetry plane or a plane of zero spanwise variation has to be provided.

In the boundary layer normal direction, the solution is obtained implicitly

similar to the 2D boundary layer solution.

The 3D boundary layer equations are computationally much less expen-

sive to solve than the Navier-Stokes equations due to a number of reasons.

One reason is that the first-order boundary layer equations employ a number

of simplifying assumptions, the chief of them being that the pressure is con-

stant normal to the boundary surface. Another reason is that the boundary
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layer grid has less storage requirements and is easier to generate. The

boundary layer grid is essentially an algebraically generated non-orthogonal

surface grid. The grid in the normal direction {_ is orthogonal to the ( _, 11)

surface grid. The grid storage requirements are thus limited to approxi-

mately 6 .imojm compared to 13°im.jm.km in a 3D Navier-Stokes computa-

tion. The boundary layer computation however, also involves calculation of

the inviscid flow which requires only a coarse grid in the surface region.

The 3D boundary layer equations proportionally involve more effort in

formulation. The equations are usually transformed to new flow variables

and coordinates. These transformations are necessary to reduce the boun-

dary layer growth in the computational plane. For laminar flow, the transfor-

mation provides a grid of nearly constant normal distance at which the invis-

cid conditions are applied. Transformations are also necessary to remove

singularities in the boundary layer equations present at the stagnation loca-

tion.

When used in a design procedure, repetitive runs of a Navier-Stokes

code will be very expensive. In the boundary layer approach, once the

inviscid results are generated, repetitive runs of the boundary layer solver

can be made rather inexpensively. For example, if one is interested in

optimizing wall suction rates, it can be done interactively using a boundary

layer code. Since the boundary layer solution uses a marching method, cal-

culations can be confined to zones of interest as in, for example, the study

of boundary layer stability near a wing leading edge or a fuselage forebody.

The present boundary layer solution method employs a compact

differencing scheme in the wall-normal direction to achieve fourth-order

accuracy. Solution profiles are fourth-order accurate in the _ direction since

the two components of velocity and their normal gradients are solved for

simultaneously and implicitly. The solution in the stream surface directions

and _1is accurate to the second-order. The algorithm used is such that wall

and edge boundary conditions are easy to apply and do not compromise the

fourth-order accuracy.

The present report also addresses the issue of accurately providing the

interpolation interface between the inviscid results and specification of the

boundary layer edge conditions. In this interface program, attention is

focussed on correctly interpolating quantities from the inviscid grid to the

boundary layer grid. Errors in interpolation or in the calculation of the metric

terms will degrade the accuracy of the solution and could be very detrimen-

tal when applied to boundary layer stability analysis. The interface provides
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the means by which these sources of error can be carefully monitored and
minimized.

The program in its present version is limited to attached laminar flows

with perfect gas assumption. The formulation includes a provision to incor-

porate basic eddy viscosity and transition parameters. Turbulence model-

ling is however not included. The energy equation is non-dimensionalized

using an arbitrary reference total enthalpy value which should facilitate the

inclusion of real gas effects externally. The program incorporates a number

of wall boundary conditions such as normal mass injection, wall heat transfer

or temperature. The method is applicable to supersonic flow with leading

edge shocks if conditions downstream of the shock are used as free-stream

conditions. Alternately, if conditions upstream of the shock are used, the

boundary layer edge temperature or density values need to be specified in

addition to the pressure, by means of an inviscid solver. Variable entropy

effects are not considered. Boundary layer interaction with the external

inviscid flow is also not included in the present work.

The present program is applicable only to flow cases where the boun-

dary layer assumptions are valid. Solving laminar attached flow on wings

and fuselages at moderate angles at attack is the main objective of the pro-

gram. With an appropriate turbulence model, the method is valid for tur-

bulent flows as well. Separated flows and vortex-dominated flows in which

viscous-inviscid interaction dominates, cannot be solved by the present pro-

gram. Flows near wing-fuselage junction and wing tip are not of the boun-

dary layer type and are excluded in the present calculation. Such regions

must be solved by a subset of the Navier-Stokes equations of higher order

than the boundary layer set.

This report includes an Appendix providing details of the computer pro-

grams. A number of test and validation cases have been presented and

explained in the report. The organization of the different programs have

been presented based on the UNIX t operating system. However, there are

no system-dependent features in any of the source programs and they

should be readily adaptable to any system equipped with a FORTRAN com-

piler. Option exists to use either the Sl or the US system of units. Graphics

programs are necessary to monitor the results at intermediate and final

stages. The information provided in this report should be adequate to write

graphics programs as required.

t UNIX is a trademarkof AT&T Bell Laboratories
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2. SYMBOLS AND ABBREVIATIONS

_'i, i=1,4

ai, i=1,3

Bi, _1,6

bi, i=1,7

bik

Cf

Ci, i=1,6

Cij, i=1,3 ,j=1,8

Cp

Cr,s

Ci, i=1,4

Di, i=1,5

F

f

G

g

H

Hr*ef

hi

h2

I

i

im

J
jm

k

ke

km

Coefficients in transformed continuity equation

differencing coefficients

Coefficients of discretized system

Coefficients in transformed _ momentum equation

11differencing coefficients

Coefficients of discretized system

Skin friction coefficient

Coefficients in transformed T1momentum equation

Metric coefficient terms, see Table 1

Pressure coefficient

Stagnation point flow parameter,

differencing coefficients

hlge

h2fe

Coefficients in transformed energy equation

Ratio, u / ue

Velocity gradient, a_.u.u
ax

Any arbitrary function

Ratio, v / Vr

Velocity gradient, a_._.v
ay

Metrics function, _- =

Metric coefficient

h12h22- g122,see Table 1

Total enthalpy nondimensionalized by

"2

U=o

Reference total enthalpy

Metric coefficient in x direction

Metric coefficient in y direction

Normal derivative of H

Index in

Total number of grid points in _=

Index in

Total number of grid points in 1"1

Index in

Stretching constant for _ direction grid distribution

Total number of grid points in t_
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L

L*

12

13

M

M,.

P

L,t

q

ri

R*

Reref

Re=,

S

$1

$2

T

T"

Tref

tx
t;
U

U' i

u"
V

Vri

Normal (4) derivative of F

Reference length, dimensional

Ratio, _P_E_
Pel-te

Ratio, I (I_F)

Ratio, I (I+-_F)

Ratio, / (1+ell _]..)
(3 P" (_t

Normal (t_) derivative of G

Free stream Mach number

Non-dimensional pressure

Free stream static pressure

OUIULIUI I V IC_,e L%/I

Total velocity, nondimensional

Heat flux

Wall heat flux, dimensional

RHS terms of discretized system

Gas constant

Reference Reynolds number based on L*

Free-stream Reynolds number based on L*

Reference temperature for viscosity calculation (eq. 18)

Vector of unknowns at k (eq. 119)

Non-dimensional length along x, j'hl d_

Non-dimensional length along y,

Non-dimensional temperature

Free stream static temperature

Reference temperature, u*2/R *

0
I]

J'h2 d'q
0

Boundary layer thickness in the x direction, dimensional

Boundary layer thickness in the y direction, dimensional

Streamwise (_) direction velocity

Cartesian component of inviscid flow in x' direction

Free stream velocity

Crossflow (TI) direction velocity

Cartesian component of inviscid flow in y' direction
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w

W' i

Ww
w

X

Xp

Y

y"

Z

Z"

Greek Symbols

G_

O_c

O_k

P
Pk

Y

Yk

C

E_1 ,F_2

EH

EF

El

e

,4,

t

Ns
t

_Lref

P

02

Transformed normal velocity

Cartesian component of inviscid flow in w' direction

Wall injection velocity, dimensional

Nondimensional physical normal velocity multiplied by "V-_'ref

Nondimensional streamwise coordinate

Cartesian coordinate

Nondimensional crossflow direction coordinate

Cartesian coordinate

Nondimensional normal coordinate

Cartesian coordinate

z multiplied by -V-R-eref

Angle of attack

Surface tangent angle

Block-tridiagonal element in sub-diagonal location

Angle between x and y coordinate lines

Block-tridiagonal element in diagonal location

Ratio of specific heats

Block-tridiagonal element in super-diagonal location

Step sizes in the _, TI, _ directions

Solution change at each iteration

Displacement thickness, dimensional

11differencing switch variable

Turbulent eddy viscosity in x,y directions

Turbulent viscosity term in the energy equation

Convergence limit for the momentum equations

Convergence limit for the energy equation

Transformed normal coordinate

Transformed crossflow direction coordinate

Density ratio, P--Ee
P

Sweep angle

Nondimensional viscosity

Viscosity constant (eq. 17)

Reference viscosity at Tref

Transformed streamwise coordinate

Nondimensional density

Free stream density
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(_t

CO

Superscripts

_t

Subscripts

e

i

J
k

r

ref

t

W

X

Y

,X

,Y
1

2

Abbreviations

ATT BL

BL

CFL

INF BL

LHS

LINF

N-S

RHS

S.E.

Prandtl number, laminar

Prandtl number, turbulent

Shear stress

transformation parameter, -_(pel_os1u s)

_ transformation parameter, "_/{ usPeneS1

Blending constant for P_differencing

Dimensional quantity

Derivative in the _ direction

Boundary layer edge

Index in P,direction

Index in _ direction

Index in _ direction

Reference value

Reference value

Turbulent value

Wall quantity

x direction derivative

y direction derivative

along x direction

along y direction

x direction

y direction

Free-stream quantity

Attachment Line Boundary Layer

Boundary Layer

Cou rant-Friedrichs-Lewy

Infinite Swept Wing Boundary Layer

Left Hand Side

Locally Infinite Swept Wing

Navier-Stokes

Right Hand Side

Surface Euler
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S/R
SIM BL
STG BL
SYM BL
2D

3D
3D BL

Subroutine

Similarity Boundary Layer

Stagnation Boundary Layer
Symmetry Line Boundary Layer
Two-Dimensional
Three-Dimensional

Three-Dimensional Boundary Layer
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3. THE 3D BOUNDARY LAYER EQUATIONS

We start with the three-dimensional compressible first-order boundary

layer (3D BL) equations in a curvilinear non-orthogonal system. The Carte-

sian coordinate system is referred to by ( x', y', z' ) and the curvilinear sys-

tem by ( x, y, z ) (see Fig. 1). The coordinate lines x and y are on the body

surface and, in general, need not be orthogonal. For example, the boundary

layer grid on a wing may consist of x coordinate lines defined in the chord-

wise direction over the wing surface and the y coordinate lines defined in the

span direction along constant percent chord lines over the wing surface.

The third curvilinear coordinate z is chosen to be mutually orthogonal to both

x and y. The superscript * refers to the fact that the body is defined in terms

of physical dimensional quantities. At a later step, the length quantities will

be nondimensionaiized by a reference length L*.

The boundary layer grid is basically a surface grid. In the body-normal

direction, it is assumed that the grid consists of planes parallel to the surface

grid. This assumption yields a great simplification in that the 3D grid is com-

pletely definable in terms of a surface grid.

The 3D BL equations in physical units consist of the continuity equation,

the momentum equations in the x* and y* directions and the energy equa-

l and 2, fortion. These have been presented by several authors (Ref.

example) and are given below:

(01lP'U')+  (O12p v ) + C13 (p'w')= 0

u* aU*
+ V* aU* + w* au* ,2 ,2

h2 ay* _z* + 024U + 025U*V* + C2sv =

"-';" 27 +028 +
p p* az*

hi ax*

v* av* • av* ,2
U* £)V* + . +W----;- + 034u + 035u*v*+036 v*2 =

hi ax* h2 ay az

(1)

(2)

(3)
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u* o_H* v* all*
+

hl ax* h2 i)y*

• aH*
+W

az*

"1 °_]'_H*p*c3z* _-_-z"rl_*'l''-'_'/_z* _ 2I---_, o3,, *_.q._.)} (4)

Cartesian frame

of reference

z' y"

Fig. 1 3D BL Coordinate System Definition

The coefficients h1, h2 and Cij relate to the metrics of the transformation

from ( x', y', z' ) to ( x, y, z ). The symbol q* refers to the absolute velocity.
w t

The quantities E1, ¢2 and i_H are explained in the next section.

Non-Dimensionalization of 3D BL Equations

The equations (1)-(4) are made non-dimensional by dividing the dimen-

sional quantities by corresponding reference quantities. The reference

quantities are as given below:
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x*, y*, z"

U*, V*, W*

p*

p*

T*

H*

by a reference length L°

by free-stream velocity Uref= u*
t t

by free-stream density Pref= Po=

by p=u,_

byT;ef=u'2/R"
by Href; choice of Hre f is arbitrary

t t

by IJ.ref,where _l.ref is the absolute viscosity at Tref

The reference Reynolds number is then defined as,

aeref = P-u_=L*/l_ref

Reref is different from the free-stream Reynolds number Re_,

Re_ = p*u*L*/ll*_ = Reref/l_

(5)

(6)

The non-dimensionalization results in a Rere f factor in the viscous terms. A

new stretched coordinate Z and a new normal velocity w are defined to

absorb this factor.

2: = Z _/'_ref ; W = W "_J-a--eref (7)

The resulting non-dimensionalized equations are given below (the super-

script * has been dropped to denote non-dimensional quantities):

_'_-_-(011PU ) + -_--(012pv) + 013 (pW) = 0 (8)
oy

u au v au

h 1 ax h2 ay
+W °_u +024 u2+ 025UV+026 v2=

az

(9)

u av v av

h I ax h2 ay
+Wav +034 u2+C35uv+036 v2=

aZ

(10)
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u _H

h 1 _)x
v aH +_a_H.H =

h2 ay a2
I"

1 a J_(1 £'H (3'_. _)H

oh2

,2 l
u. ,1-o, _) ,q2,

H ref

(11)

The equation of state, p* = p*R'T* reduces to the non-dimensional form,

p=pm (12)

The equation for total enthalpy, H* = R*_T*+ 1/2q.2
7-1

2f]u_ y'l"
H= _ + 1/2q2

Href 7-1

reduces to,

(13)

t

The choice of Hre f used here is,

*2 *2

, U_ a_
H ref -- -- (1 4)

#1

With this choice of Href, the total enthalpy at free-stream conditions H= can

be obtained by substituting free-stream values in Eq. (13). Also, since total

enthalpy at the boundary layer edge is assumed to be a constant, He = H,_.

Hence,

H_=H e=l+ 7-21M 2 (15)

The non-dimensional temperature at any point in the boundary layer edge

can be obtained as,

He "/'-1 a2 (16)
Te = 14vl2 27 1

It can be seen that as M= --> 0, H==and He --> 1. However, Tref --> 0 as

well, resulting in large values of T = T*/Tre f. Since in the present formulation,

H is used as the solution variable in the energy equation, there are no

numerical inaccuracies even when solving extremely low Mach number
flows.

The Sutherland law of viscosity for air ( 7=1.4 ) is given by,
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i.l,_T,_.s

!1 = T'+S* (17)

!_ = 2.27x10 -8 Ib sec _ 1.458x10 -s Pa sec
ft 2 OR'/2 m20K_

S* = 198.6 °R = 110.33 OK

In non-dimensional form, the viscosity law becomes,

1+S S*

= T T+--"S" ; S = mr,el (18)

Viscous Terms

The present analysis is for laminar flow only. However, in order to pro-

vide for basic turbulent flow closure, the equations include an eddy viscosity

and a transition parameter. The laminar term in the x momentum equation
r "1

l a
t!_°3-_-_-}, is modified by a turbulent viscosity term Ei and a transitionP a_
%./

parameter F such that the viscous term is represented by,

1 (1+ F) Modelling of el and F is not dealt with here, but is
P T

however, provided for in the formulation. Similarly, the viscous term in the y

momentum equation includes an i_2 as in 1 a (1+ F) The
p a_ -_- "

energy equation is modified to include the turbulent Prandtl number ot and a

1 o_ {E.(I+¢H o F' OH }turbulent viscosity term _H resulting in the term, p-_- o -_--_'t )-_'- "

The transitional parameter [" and the eddy viscosity terms ¢1 , E2 and EH are

set to zero for laminar flow.

Metric Coefficients

The components of the covariant metric tensor associated with the

transformation

= ,* ,, y* ,* =x* x'(x ,y ,z'*) , =y*(x ,y'*,z") , z* z'(x'*,y'*,z'*) (19)

are given by the following expressions (the superscript * can be dropped

since the non-dimensionalization by L* does not affect the transformation).
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2+ -I-

lO,-- lOxJ

ax' ax' ay'.ay' az' az'
o21=g12= + ay+

g22= l ayl ay

g33 = 1 , g23 = g32 = g13 = g31 = 0

The metric scale coefficients h1, h2 and h 3 are defined as,

,,_/ P2 t2 t2

hl = _ = YXx +Yx +Zx

._/ '2 '2 '2
h2 = _ = _Xy +yy +Zy

(20)

h3= 1

The component g12 is a measure of the angle 13 between the two surface

coordinate lines x and y.

g12 = hlh2 cos(_) (23)

The coefficients h 1 and h2 are measures of the arc lengths in the x and y

direction.

dsl = Incremental surface distance in x direction = hldX (24)

ds 2 = Incremental surface distance in y direction = h2dY (25)

The non-dimensional absolute velocity q at any location is given by,

q2= u2+v2+2uv cos(p) = u2+v2+2uv g12 (26)
hlh2

Although x and y are defined on the surface, it is not necessary that

they be measured along the surface (see Ref. 2, page 10). For example, in

the case of a boundary layer grid on a conically shaped body, x can be

measured along the axis. The metric coefficient h1 will be dependent on the

way x is measured. If x is measured exactly along x, then dsl = dx and h 1

will be equal to unity.

The coefficients Cij in the equations (8)-(10) are functions of the metric

scale coefficients h 1, h2, g12 and their derivatives in x and y directions. The

expressions for these coefficients are given in Table 1.

(21)

(22)
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Table 1. Coefficients Based on the Metrics h1, h2 and g12

Cll = --_
hi

012 =
h2

O13 =

O = h2h2 - g122

g12 t'g12 °':':3hl °qhl 1 oqgl2 }024- _" hl 2 _)X + ;)y h 1 ;)x

0h }025 = .-_ lh2 1+ Lhlh2_ '_ 2g12- _-

hl [_g12 h2 _'h2 g12 _h2 1
= -[; J026 _" C)X h 2 o_y

hih2
C27 =

hlg12
028 -

g

h2 _'.o3g12 i)hl g12 c3hi}C34 = oLax hi ay hi ax

C35
Lh,h2 J J o_x

g_.2 t'g12 °qh2036 = _ , h22 _y

h2g12
637 =

g-
h12h2

038 =
g

o-:-:-:3h2 1 °_g12 ]

+ oqX h2 o_y
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Pressure Gradient Terms

Consistent with the boundary layer assumptions, the pressure remains

constant in the boundary layer normal direction. Consequently, the pressure

distribution calculated from the inviscid flow can be used to calculate the

boundary layer edge velocities uo(x,y) and ve(x,y).

When the 3D BL equations are taken to the limit :_--) oo, !_---) 0, the

resulting equation set is called the surface Euler equations (see also Ref. 3).

These equations characterize the edge streamlines resulting from a pressure

distribution imposed on a body in the absence of viscous forces and normal

pressure gradients. The energy equation reduces to H, = Ho = 1 + --_2_M 2

and the momentum equations become:

IC xh 1 (_x + h 2 _)y + 024u2 + 025UeVe + 026v2 = lpe 27 +028 (27)

IC xh1 ax + "h2 (_y + C34u2 + C35u°v° + C3sv2 = lpo 37 +C38 (28)

Given p(x,y) and initial values of ue and vo, the above equations can be

solved for the boundary layer edge conditions of ue and v e at all downstream

points.

Boundary Conditions

The 3D BL equations are parabolic in the normal direction :_and hyper-

bolic in the stream surface direction (x,y). This means that information trav-

els instantaneously in the :_ direction and propagates in the local streamline

direction along planes parallel to the surface (see Wang4). A marching

method in the x direction is the appropriate choice to solve this class of

equations, with implicit solution of quantities in the normal direction. One

can also obtain the solution in the crossflow direction y by marching. Spe-

cial procedures must be incorporated if the crossflow direction changes sign.

Consequently, an initial plane of data has to be specified as initial conditions

to start the marching method. This can be obtained from a special subset of

the general equations valid at the stagnation point or attachment line from

where the boundary layer originates. Similarly, a plane of data correspond-

ing to one side boundary has to be specified to start the solution march in

the y direction. This plane of data is also obtained from a subset of the 3D
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BL equations by making some simplifying assumptions.

The boundary conditions in the _' direction are as follows:

2 = 0 (wall) u=O; v=O; _, = _'w (suction or blowing velocity)
O3H

= 0 for adiabatic wall or,
o32

H Hw 2= = _4vlooTw wall temperature specified or,

o3"1"I heat flux at wall specified.
o32 w

2 = _'e (BL edge) U -- Ue9 V -- V e

H=He=I+ 2-_M 2

The total enthalpy remains a constant at the boundary layer edge. The
.... _---J _l..,b_:_,,,d k_, ,.,^h,;,_,-. .l.h_edge velocities requireu as boundary condition are uu,,=,,,_u,.,yo_,,v,,,u ',,_

surface Euler equations. Alternatively, they can also be obtained by interpo-

lating the inviscid velocities to the boundary layer grid. In simpler cases, the

inviscid velocities can be obtained by closed form solutions.



-18-

4. TRANSFORMATION OF THE 3D BL EQUATIONS

The boundary layer coordinate x is measured from the stagnation point

or the attachment line. At x=0, the x momentum equation becomes singular

for attachment line flow. If the body has a 3D stagnation point, the y

momentum equation also becomes singular. Therefore, transformations are

needed to remove these singularities, so that in transformed variables, the

solution becomes finite and regular in all regions. In addition, in terms of

physical variables, the boundary layer thickness grows as a function of the

edge conditions. The transformation can be devised so that this growth is

minimized, resulting in a nearly constant normal coordinate distribution.

Obviously, this growth is a function of the pressure gradient and the type of

flow (laminar or turbulent). We restrict ourselves to a transformation suitable

for laminar flow.

Here we choose a Levy-Lees type of similarity transformation somewhat

akin to the one employed by Vatsa and Davis s. Introduction of this transfor-

mation gives the similarity form of the equations at the stagnation point or

attachment line.

The transformation is given by,

_=x ; T1= y (29)

j'pdz= j'pdz (3O)
o PelleSl 0

._ Ue U_ (31)

Sl = j" h 1 d_ (32)

a a
Note that although _ = x, _ is actually _ l y,;t

a
a a (holding 1] and _ constant). Similarly, -a_lwhereas,-_-is -a'_l n,;

aL I are different.

The subscript e refers to conditions at the BL edge. The quantity sl

corresponds to the non-dimensional distance on the body in the x direction.

It can be verified that, in the special case of zero pressure gradient flow,

.,_ f Reo_ zUe=pe= 1, _ reduces to the similarity variable _ j'p dz. The
Y sl o

(holding y and Z constant)

and
X,;t
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transformation procedure involves the use of equations (29)-(32) in recasting

the equations (8)-(11) in terms of _, 11and _.

Transformation of the Continuity Equation

The continuity equation (8) is first integrated to give,

C13PW = _

z
a a

_)x! (C11pu)dz - -_! (C12pv)d2

Transformation using _ _) _ _) _)_x - _)_ ÷ _)_-and _)y -

C13PW =- _)_"o

Substituting pd2 =

a

÷ c3_ gives,

C 13_/

c_ z

(C1 lPU)d2 - _- ! (C 11pu)dt _c3x

z

(C12pv)dt- [ (C11pv)d_'
ay6

PeneS1
d_ and p = PelJ'eSl c)_ gives,

PelVeS1 PeP.eSl
- | ) d_ - C 11u

at aP,_ (Cllu

o_ _ pelVeS 1

- -_ [ (C12v ) dr_- C12v_6

PeneS1 o3_

ax

Now let us define a new normal velocity w as given below:

SlF___. S1 G v r o_W = _,/$1 03_ + +

Ue 0_' h 1 ax h2 ue o_y

F = u/ue

G = V/Vr

(33)

(34)

(35)

The velocity u is scaled by ue and the velocity v by a reference velocity V r.

The reference velocity v r can be u e or unity. Choice of vr = ve may result in

large values of G near regions of cross-flow reversal and is to be avoided.

With the definitions of w, F and G, and noting that Cll =013/hl and

012 = 013/h2, we get,

Pe_eUe W - °_
Pe_eslue

C13 _ _ ! (CleF) d_ - -_- ! (C12Gvr ,pegesl_ ) d_
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Differentiating with respect to t_ and simplifying gives the transformed con-

tinuity equation,

_)w - oqF - _)G
- AI-_- + A2 F + A3-_'-q + h,4G (36)at

The expressions for h i are given in Table 2.

Transformation of the x Momentum Equation

The left-hand side of the x momentum equation (9) is transformed as
follows:

u au v au wau
h'-;"a--'x"+ h_" _)"¥+ _)_,+ C24u2 + C25uv + C26v2 _

u ,au au.a__ v ,au au.a__ au.a___
_1 (_"+_" O_X )+ "-_'2("_-+-_" C)y )+ W 6_ £)_' + 024U2 + 025UM + 026v2

Sl

Multiplication by u_- and replacing u, v by Fue and Gv r respectively gives,

Fsl aFUe Gslv r aFue 1 aFue [FSl _ GSlVr a_ wSl _1
hlU o c3_ + hlU2 o_q + Ue °q4 L h l oqX+ h2 ay + ue a2 J

2 v2 $1

+ 024F2s1 + C25FGvr uS"_le+ C26slG u_" = RHS. (--_e2)

The term in the square brackets is equal to w from equation (33). In fact,

the choice of w in the transformation of the continuity equation is based on

the transformation of the momentum equations.

The pressure gradient terms on the right-hand side can be obtained

from the surface Euler equations (27) and (28). Thus the term

can be replaced by

U e c_Ue

p h 1 oqx + h 2 ay + 024u2 + 025UeVe + 026v2

Sl

When multiplied by u"-_" the pressure gradient term becomes,

Sl [u°°_u° ve°3u° ]ox + + +C ,uovo+
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Table 2. Summary of the Transformed 3D BL Equations

Equations:

oqw _ _, _)F - _)G
_)_ 1_' + _'2 F + A3-_" + _'4 G

_)F2 _ _FG

-(I1L-wF) = BI"--_- + _2--_- + B3 F2+

oh (12M_wG) ... _)FG .-. _)G2
_)_- = L;1-- _- + L;2-_--- + C3 F2 +

_-_- (131-wH) =

B4FG + B5 G2 + B60

C4FG + C5 G2 + C60

D_)FH _ _)GH

1_" + U2_ + D3FH + D4GH + D5

Transformation:

F= u

Ue

G= v
Mr

_F
L - - F'

_G
M- -G"

_)H
I - - H'

at

S 1 -" j'hld_

(_ = _/(pel.l.eSlUe) •"_ Ue; _ = Pei.LeSl

W

Y

z z

PeneS1 !p d;_ = _(x,y) !p dZ

_,SlN + +Sl F__._. Sl Gvr _)_
Ue _)2: h 1 _x "h2 ue _)Y
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Coefficients:

_'1 = "--Sl
hi

_'2 -

_'3 = --SlVr
h2ue

-sl{cVr}
al = -A1

B2 = -_'3

s 1 ohue

B 3 = hlUe o_ _'2+024Sl

SlY r ohMe A4+025 S1Vr
B4 = h2u2 _ ue

$1 V2

B 5 = 026 U 2

B3 = B3+A2

B4 = B4+#,4

c)Ge }
B6 = - B3+B4Ge+BsG2+(B2+_,3)

C1

C2 = -A3

034Sl Ue
C3 -

Vr

S1 ohVr

C 4 = -#,2+SlC35-+ hlVr ()_

~ SlV r Sl O_Vr
C5

-A4+C36--_e ÷ h2ue o_11

(_4 = 04+_'2

Cs = C_A4

_)Ge #'3 c)G2
06=-{C1_-+(02+-'_')-_--+C3+(_4Ge+_5 G2 }
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DI = -AI

D2 = -A3

D3 = -_'2

D4 = -_'4

u= 1 o_
D s =

Href 2 o_

q2 = F2u 2 + G2vr 2 + 2FG

O= Pe _ f H

P L ("f-l) M2

O' = _- H' ,1',f-1

t. _ -

i= _ = ,_1.'+_/
t" %

po.o Le-_

Tr'efT e

I'= I+_ _-e e'
2 (_+0) 2 q-0

11 = I (1+--_-£)

12 = I (I+-_-F)

13= /(l+eH°]")
P" _t

1---_ o_ 2}I (---_-)--_-q

VrUeg12

hlh2

2 q "l'Te
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The viscous term ----
1 a

p a_,

Substitution of _ =
8z

Pe T
where, 6 =- - (37)

P Te

ij, £1 _, au $1(1+-_--1)-_-- 'multiplied by u_ is transformed to,

P_ reduces the viscous term to _ 1-_" where,
Pel-teSl

el F )11 = _O-_(1 +- (38)
Pel.,te

Putting the different parts of the _ momentum equation together and combin-
a

ing the _- terms into one and with

L = __aF = F' (39)

we get,

"(I 1L-wF) = -Fw' +

SlVrG aF

h2Ue

Sl F2 aUe sl F aF SlVrFG aue
+ +

hlU e a_ h 1 aP_ h2u 2 a'q
+

+ 024Sl F2 + 025Sl Vr FG + 026 Sly2 G2

Ue Ue

- esl I-h1

- aF - aG
Substituting for -Fw' by F (A1- _- + _,2 F + A3-_--

and simplification gives •

+ C24Ue + 025Ve + C26"_-e2 ]

+ A4 G) from equation (36)

a (I1L_wF) = BlaF 2 _ aFG
a-_ _ + IJ2_ -- + B3F2 + B4FG + BsG2 + Bde (40)

The expressions for Bi are given in Table 2. Note that the coefficient B 6 in

the equation corresponds to the pressure gradient term. It can be obtained

from equation (39) by taking the limit ( --> _ and using the relation,

_ av e

"_'-L = #'2 + A3-_-- + #'4ve (41)

from the continuity equation (in the limit _ --> _).
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Transformation of the y Momentum Equation

The y momentum equation is transformed in an identical fashion to the

x momentum equation. In this case, we multiply both sides of the equation

by The m, m, __ m, ,
uev r o_x ay az derivatives are transformed to at aTI

a
n derivatives as explained in the case of the x momentum equation.at,
Finally, we substitute for the new normal velocity w and define 12 and M as

E2F )12 = -P-E-(1 + _ (42)
Pete !"1"

aG
M = -- = G' (43)

at
Simplification and rearrangement of terms results in,

a (12M_wG) ^ aFG ^ aG 2
= L;I----_- + L;2--_-- + C3 F2 + C4FG + C5 G2 + C6e (44)a-_

The expressions for C i are given in Table 2.

Transformation of the Energy Equation

The left hand side of the energy equation is transformed to,

Fue aN GaH aH .a__ aH.a.._ Fue aH.a_.__ GVr
h 1 aP_ + h 2 all +w-_- aZ + a[, ax" h_- + (_ ay h2

Multiplication by (sl/Ue) and substitution for w from equation (33) gives

FSl aH SlGVr aH aH
+ +W_

h 1 aP_ h2u e all at

The right-hand side multi :)lied by (Sl/Ue) simplifies to,

}a, (_H 1-G U=o c) 2

--_- 3-_--I -- --:-.'/2. q0 Hre f -_"

where,

13= /(1+ _:H-_-]")
t

(45)

(46)
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Using the continuity equation (36) and some algebraic manipulation gives,

m = D aFH _ aGHa (131_wH) + + D3FH + D4GH + D5 (47)at
where I is the normal derivative of H

aH
I- - H' (48)

at

The coefficients D1 to Ds are given in Table 2. The term Ds is unlike the

other coefficients in that it is not just a function of the edge conditions. It

depends on the variables F and G also. If the energy equation is solved

decoupled from the momentum equations, F and G are known quantities

and D5 can be calculated explicitly.

The ratio e can be obtained in terms of H and T e from equations (13) and

(16) as

e- pe f H 1 213_-1 (49)p- (y_l)M 2 2 q yTe

The viscosity ratio I can be expressed as below:

I = _P_E_ = 1 r*l.psT,l.s.__

P_l_ e LT'+S*

T_+S*

*-v- * 1.5

_s/e

Simplification gives,

I1+ ] s" s (50)
l= ;. _ - TrefTe - T-"_

The ratios1I,12,13are relatedto Ias given by equations (38),(42)and (45).

For laminar flow, 1=11=12=013. The normal derivative of I (required subse-

quently) can be obtained by differentiation as,

al 1+_; _-e e'
r = m = (51)

at 2 (_+e) 2 Ve

Similarly, the normal derivative of e required at a later step is,

e' ,e [ H' ,]y-1 (52)= (3_ = (,__I)M 2-qq yTe

The transformed 3D BL equations with a complete definition of all the vari-

ables and coefficients are given in Table 2.
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5. SPECIAL SUBSETS OF THE 3D BL EQUATIONS

The boundary planes required in solving the 3D BL equations are

obtained as solutions of degenerate forms of the complete set at the boun-

daries. The general equations simplify to 2D-like forms at these boundaries,

which can be solved independent of the 3D region. In some cases, the

quasi-2D form at a boundary is the result of some simplifying assumptions.

It is proposed here to present briefly the equations corresponding to these

cases. The following types of boundary flows are encountered:

1. Stagnation point flow (STG BL)

2. Symmetry line flow (SYM BL)

3. Attachment line flow (A]-I BL)

4. Infinite swept wing flow (INF BL)

5. Similarity-type flow (SIM BL)

A brief description of the corresponding equations and their transformed

forms will now be presented. It is to be noted that after transformation,

these equations can also be expressed in the general form given in Table 2,

with some coefficients reducing to zero and some others taking on different

values. Hence, these equations can be solved by the general 3D BL solver

with appropriate edge conditions for each case.

Stagnation Point Flow (STG BL)

The basic assumption is that the location of the stagnation point is

where the total inviscid velocity becomes zero on the body surface. The

stagnation point may be of the 2D flow type (example: near the leading edge

of an airfoil), or the 3D type (example: forebody of a fuselage at an angle of

attack). The body in this vicinity is assumed to have some degree of blunt-

ness. Starting of boundary calculations on a pointed body has to be

obtained from similarity solutions. Since ue = 0 and ve = 0, the solution that
_u _v

is sought are the _ and _ values within the boundary layer. Because of

the similarity-type transformation used for the stagnation point flow and the

general 3D flow, the solution profiles obtained from the stagnation point flow

can be used directly as initial planes for the 3D solution.

Both the x and y momentum equations are singular at the stagnation

point. Hence we differentiate the x momentum equation in the x direction

and the y momentum equation in the y direction to obtain equations charac-
c3u c_v

terizing _ and --_y.
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The continuityequation with u = v = 0 reduces to •

Cllp-_-x + C12P a'_ + 013 aa--_w = 0

We define F and G for this case as:

f aue au
F=m ,fe= _ ,f=m

fe ax ax

ave av
G=-9-.-; ge = _ ,g-

ge ay ay

(52)

(53)

(54)

Equation (52) then becomes

pfeF pgeG apw

hi h2 a2
=0 (55)

Define a transformation,

fp =
0

(56)

(57)

Hence, _ = UP

Equation (55) is then transformed to,

(58)

phlg--------_e _ = 0 (59)
pF+ h2fe +UP at_

.._ hi hiDefine, w = pW - U pW (60)
PelJ.efe fe

hlge

and Cr,s = h2fe (61)

Equation (59) simplifies to,

aw
- - F- Cr,sG (62)at

Differentiating the x momentum equation (9) with respect to x and setting

u = v = 0 gives,

h--_- + a_ax ax 27 +c2e + --- (1pa2 _
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(Pe) 1 -aue 2
The pressure gradient term reduces to _ --_-1(-_-x)

equation to the limit _'--) _.

(54) we get,

f2 F2 + wf aF

by taking the above

Using the notations from equations (53) and

.e_e 2 fe a J" ,. El_,(3F1

= .fo +-;--_l,_.+;-.)_-j'
Transforming aF to aF

a-_ -_- • up and using equation (6) for w, equation (38) for

11gives

aF a aF

F2+w_at = 0+_-(I 1--_-)

aw

Using equation (62) for -_- results in

a_(.._-_- wF)= 2F_+C...FG- e (63)

Transformation of the y derivative of the y momentum equation by a similar

procedure gives

a._.( aG12-_-- - wG) = 2Cr,s G2 + FG - Or,s(}

The energy equation (11) with u=v=0 reduces to

EH 0 aH

_-= ;2_,Lo _ o, a_j

(64)

Transformation and simplification as before gives

aH a ,, all,
W_

Application of the transformed continuity equation gives

a_.( OH13-_- - wH) = FH + Cr,sGH (65)

The complete transformed system for 3D stagnation point flow is given in

Table 3. It may be noted that the equations are similar to the general form

with some terms equal to zero and some coefficients defined differently. It

ue Jp d2 tends
can also be seen that the general transformation _ = Pe_eSl 0

fe Ipd_' as x_O
to the stagnation point flow transformation _ = Pegehl o
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Table 3. Summary of the Transformed STG BL Equations

Equations:

aw
= P,2F + _,4G

a_

a (I1L_wF) = B3F2 + B4FG + B68

a (12M_wG) = C4FG + CsG2 + C68

_._-(131-wH ) = D3FH + D4GH
a;

Transformation:

f aue au
F=-- ; fe = _ ;f=_

fe ax ax

ave av
G = -g-- ; ge= _ , g=_

ge ay ay

aF
L- -F'

aG
M- -G'

at
aH

I- - H'
a;

_ = X

TI =y

2

0

_/ hiw = pe-_--efe pW
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Coefficients:

A1 =_'3 =0

A2 = -1

A4 "- -Or, s

B 1 = B 2 = B5 = 0

B3=2

B 4 = Cr, s

l_3 = B3+A2

B4 = B4+A4

B 6 = -1

C_ -- C2 = C3 - 0

C4= 1

C5 = 2Cr,s

C4 = C4+A2

_;s = Cs+A4

C 6 = -Cr, s

D1 = -A1

D2 = -A3

D3 = -A2

D4 = -_4

D5= 0

Pe H

p _/TeM 2

,= _P_E_=
P._ l°+S J

s*
_=

TrefTe

1+_ _-0 O'

2 (_+O) 2 q-_
I

11 = 12 = I ;I 3 = _"

; Or _
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and (uo/sl) --) (fo/hl). The general definition of F = u/u o tends to the stag-

nation point definition of F = fife as x --) 0. The solution G for stagnation

point flow translates to G in general 3D flow by the relation

G (3D BL flow) = G (STG BL flow). ( ve / v r ) (66)

In the transformed system for STG BL flow, the only input from the

external inviscid flow is the ratio Cr,s. The value of Cr,s = 0 corresponds to

that of a 2D stagnation point flow (for example, flow past an airfoil at an

angle of attack). The value of Cr,s = 1 corresponds to flow past an axisym-

metric body at zero angle of attack ( blunted cone, ellipsoid or any axisym-

metric body). Values of Cr,s in the range (0,1) correspond to flow past a

general stagnation point. For fuselage-type bodies at moderate angles of

attack (o_ ___6°), Cr,s = 1 is a fairly good approximation. In this case, F and G

solutions are identical. This avoids the difficulty of mapping the solution

from the stagnation point flow coordinate system to the general 3D BL coor-

dinate system defined on an infinitesimal circle around the stagnation point

(as discussed in Ref. 2, page 32).

Symmetry Line Boundary Layer Flow (SYM BL)

In many boundary layer flows, notably in flow past bodies of revolution,

lines of symmetry exist along windward and leeward planes. The flow along

the root plane of a symmetric wing-alone configuration also belongs to this

class. The solution along these planes can be obtained independent of the

3D region, and can be used as starting planes for y direction sweep in the

3D calculation. The crossflow velocity ve is zero in the symmetry plane;

however, the gradient of ve in the orthogonal direction is non-zero. The

quantities to be specified at the boundary layer edge are thus, the velocity

u e and the gradient ave/ay. The transformed equations for this type of flow

are discussed below.

Along the symmetry plane, the following assumptions are used:

(1) The grid is orthogonal at the symmetry line; hence x and y correspond
ag12

to orthogonal coordinates and g12 = 0. The derivative o')y is not neces-

sarily zero.

(2) The crossflow velocity ve is equal to zero; aVe/ay = ge is not necessarily

equal to zero.

(3) The quantities u, p, p, h1, h2 are even functions on the symmetry line,

i.e., their derivatives in the y direction are equal to zero.
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The metric coefficients 024 and 034 reduce to zero with the above

assumptions. The y momentum equation reduces to a singular form; hence

O3C34
its derivative in the y direction is taken. The derivative is non-zero

O3y

and is retained in the equation. The resulting equations are given below:

•_x (h2pu) + hlpg + hlh2 a-_(p_ ) = 0 (67)

Ue O3Ue 1 O3 {1._ I_1-, O3U}
U O3U wo3U = 6 (' )+---- (1 (68)+ h, p

._y_u_g 1 2 o3-q O3C34 2

+ -_2 g + e "-_'--dZ+ --_---U + C35ug =hl O3x

e _'° + + + 035Ueg e + (1+ £)h2 ue o3y e P O3Z
(69)

r 1

h I o3x + - (I+EH'-_'a£) • P.t_)-_"(-_-) (70)

O3Z p o32 [ o ILL O't O3Z Href J
The transformation of the above equations to computational variables

can be done in a manner identical to the 3D BL equations. In the present

case, however, G and w are defined as,

G = __L (71)
gr

Sl F a_.__w = e sl a--_-+ (72)
uo O3Z h 1 O3x

The reference quantity gr can be chosen as ue or as unity. The transformed

system and related coefficients are summarized in Table 4.

The solution F and G from STG BL equations can be used as the initial

plane for the symmetry line flow. The solution G needs to be converted as

given below, due to differring definitions.

ge
G (SYM BL) = G (STG BL). -- (73)

gr
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Table 4. Summary of the Transformed SYM BL Equations

Equations:

oqw A i)F
= 1"_" + A2F + h,4G

_-'_"(11L-wF)

a

"_" (12M-wG)

-(131-wH)

o_F2

= BI"-_'- + B3 F2 + B4FG + B6e
A olFG

= L.;1---_- + 03 F2 + C4FG + C5 G2 + 060

o_FH
= Ul--_-._-- + D3FH + D4GH + D 5

o%

Transformation:

U
F=m

ue

G = _ oqv
gr = "_y/gr

_)F
L- -F'

a;
_)G

M- -G'
a;

o_H
I- -H'

a;

s, =

_ Ue= q(pol_oSlUo) , _ = Pol_oSl

_ = X

11=y

2 ;t

= , _ j'pd2 = _/(x,y) J'pdz
Po_oSl 0 0

S FN
uo ;)Z + hl oqX

W
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Coefficients:

-S 1

hi

A 1 o_(h;_))

A3=O
grSl

h2Ue

B1 = -_'1

B2 = Bs = B4 = 0

sl o_uo
B3 = -_,2 +

hlue a_

B4 = -A 4

_3 = B3+h'2

B6 = -B3

C1 = -A1

C2= 0

_)C34 sluo
C 3 =

c)Y gr

S1 o_gr
C4 =

hlgr _

Cs =

04 = c4+ ,2

$1
Cs =

hlgr

•z,2 + Czssl

o_ h2Uegr

D1, D2, D 3, D4 as in Table 2 (3D BL)

035ges1
C3

gr

Ds u_'= '2'1-'0"_ [I'FL I(L2+FL')]
-- .._.;... u e _"_1 +Href

1 1 _)F2 2
L'= _ {-_-B1--_-+_3F +B60-L I,'+wL}

0, 0', I, I', 11, I1', 12,12', 13,13', as in Table 2 (3D BL) with q2 = F2u 2
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Attachment Line Boundary Layer Flow (ATT BL)

In the calculation of flow past a wing geometry, an initial plane of data

has to be calculated at the leading edge attachment line. This line is

located from the inviscid flow as a curved line on the body at which the

streamwise velocity is equal to zero. To a degree of approximation, this line

is coincident with the line at which the pressure is a maximum in the vicinity

of the leading edge of a wing.

The boundary layer equations for an attachment line are similar to the

symmetry line equations, with symmetry along a y coordinate line. There is

however, no symmetry in the metric coefficients and the grid need not be

orthogonal. The following assumptions are valid:

au
(1) u = 0; a-'x = f is a finite value.

av
(2) v is finite but a--x= 0.

(3) The coordinate y is coincident with the attachment line.

ah 1 o_h2

(4) The metrics g12 , ay ' ay need not be equal to zero.

With these assumptions the continuity equation (8) reduces to,

C11Pf + -_.y (C12pv) + C13 (pw) = 0 (74)

The x momentum equation reduces to a singular form on the attachment line

(assuming that C26 = 0 on the attachment line; fairly good if the attachment

line is not too curved). Differentiation of the x momentum equation in the x

direction and simplification yields,

a._f_f 1 waf + °_026 v2
h2 ay + h 1 f2+ o_2: o_X

+ 025fv

e ay+ + +c2,f,ve+--- (75)

The y momentum equation simplifies to,

0_._._v + W O_V + 036 V2
h2 ay a_ = e a--T+ (76)

The energy equation becomes,
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I_._ ,1-o, _) , v2 , ]

v _)H w°hH = 1_..._. (I+EH .O._F)_)H UE g_'-)_-_-2")I (77)h2 _)Y + 02 P 02 [O IJ. O't o_ Hr*ef

The transformation used here is similar to the 3D BL transformation,

already discussed. The following distinctions are to be noted:

Z Z

= _ j'p d2 = 9 j'p dZ (78)
0 Pel'Lehl o

_/ fe fe (79)= _Pel_ehlfe ; _I/= pe_ehl = _"

The transformation defined here is exactly compatible with the the 3D BL

Ue fe
transformationsince m __> as x -->O.

Sl

The normal velocityw has a new definitiongiven as,

W = W hl °_ hlVr _-_

fe _ + _G ay
(8O)

The complete transformed set of equations for attachment line flow is given

in Table 5. The reference value for v can be chosen as the gradient fe.

Infinite Swept Wing Flow (INF BL)

This type of flow is typical of the flow that occurs in the mid-section of a

large aspect ratio wing at constant sweep angle. The flow at any chordwise

section is assumed to be the same as the flow at any other chordwise sta-

tion. If we define the boundary layer coordinate x along the wing surface in

the streamwise direction and y along the wing surface parallel to the leading

edge (see Fig. 2), then _-_ quantities are assumed to be zero.

For a non-tapered wing, for example, if A is the sweep angle and a c the

surface tangent angle, the metric quantities simplify as given below:

_x---i - " _Y' = 0 _)z' = sin (ac)o_x -cos(ac) ' o_x ' o_--Z

o_x.__[= sin(A) ," _y' = cos(A) ," _)z.._.'=
_)y _ (3y

0
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Table 5. Summary of the Transformed ATT BL Equations

Equations:

o_w _,2F + ~ _)G
o_-"_"= A3-_'-_ + P,4G

_ _)FG
-(I1L-wF) = m2--_'- + B3 F2 + B4FG + B5G2 + B60

_. ^ _G 2(12M-wG) = L;2- _- + C4FG + C5G2 + C6e

,.. _)GH(131-wH) = u2--_--_ + D3FH + D4GH + D5

Transformation:

f _)u/_)x
F-

fe _Ue/_X

G= v
Vr

_F
L-

a_
aG

M-

_)H
I_

a;
_=x

-F'

-G'

- H'

11 =y

z _/ fe

hlVr o_w = W hl _--_-+ _G _--_-
fe o_2 h2fe ()Y

; (_= (foPol%hl) V2

Coefficients:

_'1 =0

_'2 = -1

_'3 = hlVr
h2fe
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013(I) £)1] h2f e

B1 =0

B2 = - _'3

B3 =2

hi Vr °_fe hi

B4 = h2f2 aT] + C25vr_-e - A4

Bs = hi Vr2 aC26

E}3 = B3+_,2

B4 = B4

B6 = - r B:}+B4Ge+BsG 2

C1 = 0

C2 = - A3

C3-- 0

C4 = - _'2

h 1 aMr _ hlV r

Cs = feh2 _ A4+C36--_-e

C 6 = -CsG 2 C2 aG 2
2 _q

DI= 0

D2 = -A3

D3 = -_'2

D4 = - P'4

"2

o,= [,'GM
Hr*ef "r _,'--"_" ! +

M'= I'_ C2 +(_5G2+C60+M(w-12')

e, e', I, I', I1, I1', 12, 12'' 13, 13'' as in Table 2 (3D BL) with q2 = G2vr2
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_"_ __ Section

oo A
X

X

urface

tangent

Fig. 2 Nomenclature Used for Infinite Swept Wing Flow
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From equations 19 thru' 22, we get,

hi = 1 ; h2 = 1 ; g12 = sin (A)cos ((Zc)

The metric coefficients listed in Table 1 simplify as follows:

011 -- 013 ---- "_ __--1_122

025 -- 026 ---- 035 "- 036 -" 0

g12 o_g12 1 _)g12
024 = --_ _ ; 034 =

g ax g ax

The 3D BL equations simplify to the following form for infinite swept

wing flow:

_-_'(C11pu) + C13a-_-(pw) = 0 (81)

u _u w_)u ue _)ue 1 _)
hi o_x+ +C24 u2 = 8( +C24u2)+__mo_Z h 1 i)x p o_Z

Ue i)Ve 1 a [" ¢2_, i)v']

h1 axav+ waVo_;t+ C34u2 = 8 (,hi o_x + C34u2 ) + ----po_z_LI_(I+-_-t)_- j. (83)

u aH aH l a I_E.(I+EH__oF)aH uZ ,1-o,a ,q2,1

h, oqx 4-_/o32: - P o_ L 0' _1, G t o_ a;e'l'l'('_-")-_"(' 2 )I (84)

The edge velocities u e and v e may be obtained, for example, using the clas-

sical sweep theory. According to this theory 6, the inviscid velocity distribu-

tion past an infinite swept wing (ISW) is analogous to the flow past an airfoil

section normal to the wing leading edge at a Mach number M==cos (A),

where A is the constant sweep angle. If we define Ue,2D as the non-

dimensional inviscid velocity distribution on the equivalent airfoil (referenced

to the free-stream velocity, Moo U* cos (A)), the edge velocities on the

infinite swept wing are given by the sweep theory to be,

Ue,2DCOS (A)
= (85)

u° [cos 2 (O_c)cos 2 (A) + sin 2 (CZc)]'/2
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v e = sin (A)[1--cos (O_c) Ue] (86)

For the calculation of the side boundary plane of solution on wings with

taper, it is possible to relax some of the above assumptions. In this case, ue

and ve are not related to a constant sweep angle A, but rather obtained from

a 3D inviscid calculation. The variation of Ue and ve in the y direction is

however, neglected. Since the inviscid velocities are not related to a single

sweep angle, this approach m called locally infinite swept wing assumption

m comes closer to the real flow in the case of tapered wings. In addition,

the metric h 1 is not assumed constant in the y direction and the metric h2 is

not assumed constant in the x direction. In this case, the coefficients C25,

C26, C3s and C36 will be non-zero. Corresponding to this, the LHS of x

momentum equation will have the additional terms C25uv + 026 V2 and the

LHS of the y momentum equation will have the additional terms

035uv 4- 036 V2.

The transformation of the equations to computational coordinates can

be done in the same manner as described for the 3D BL equations. The

resulting equations and expressions are summarized in Table 6. The extra

terms arising from the locally infinite swept wing (LINF) assumption are

shown enclosed in boxes.

Infinite Swept Attachment Line

The initial conditions to solve the infinite swept wing (ISW or LINF)

equations can be generated by solving the infinite swept attachment line

equations. These equations are obtained by setting _)/oqq terms to zero in

the general attachment line (ATT BL) equations. The resulting equations for

infinite (locally or otherwise) swept wing attachment line are as given below.

oqW

F + I_,4G ; A4 =

hlVr

013f e °_/_)1"1(C13/h2)
(87)

_-_-(I 1L-wF) = 2F 2 + B4FG + B5G2 + B60 (88)

1 h °q026 v2/f2 I t °q026 A JB4=-A4+C25hlVr/fe ;B5= 1-"_--X r e ; B6=-1 h1025Ge-h1_L_ I

_-_-'_-(12M-wG) = FG + C5 G2 + C60

05 = -,_4 + "_a 036 ; 0 6 = -h1036G2

(89)
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Table 6. Summary of the Transformed INF BL Equationst

Equations:

aw _ _, aF +A4_
a_ 1"_" + A2F

a_ -aF2 [B4FG+(I1L-wF) = _1-_" + B3 F2 + B5G2J + B60

a aFG

-_-(12M-wG ) = C1.---_. + C3F 2 + C4FG + C5 G2 + Cse

a_ aFH D4[_D.._+Ds(131-wH) = DI-- _- + D3FH +

Transformation:

U
F=m

Ue

G= V
Vr

aF
L- -F'

a_
aG

M- -G"
a_

aH
I= -H'

a_

s, = Ih,d 
o

(h = q(po_os_uo) ,

_ = X

Tl=y

2

Pel'l'eSl 0

w = W sl _---_-+ SlF_--_-
u e o_2 h 1 oqx

_/ Ue= Pe_1

2

_(x,y) j'p dZ
0

1 Boxed terms are non-zero only for locally infinite swept wing
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Coefficients:

A 1 -- -S1
hi

-sl afc 3____'2- C13_ a_ 1 hi
L

_'4 = slv_ a --_C13"
C13u,,_ [. h2

B1 = -A 1

sl aue

B3 - hlUe oq_ A2+C24Sl

B 4 = - A4+c25SlVr
Ue

slv_

B5 = C26 U2

B3 = B3+A2

B4 = B4+'_4

O1 = -A,1

C34S1Ue
C 3 -

Vr

Sl aVr
C4 = -_,2_1C--_3s

hlV r a_

C5 = -_'4+C36 $1Vr IUe

D 1 = -A 1

D2 = -A3

D3 = -_'2
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D = -A41

2{tD5 = u_o 1 _) 1---_ _) 2
Hr*ef 2 _ I (--_--)--_-q

D 5, e, 0', I, I" etc. as given in Table 2 (3D BL)
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*2

_) (131-wH) = FH- + D5 with D5 = H--r:f('-'_-) (IGG') (90)

The terms in boxes are non-zero only if locally infinite assumption is used.

Similarity Boundary Layer Flow (SIM BL):

Similarity solutions are necessary to initiate the solution in cases where

there is a flow singularity. Usually this involves a sharp-edged or sharp-

tipped body such as flat plate, wedge or cone. Some aerodynamic bodies

can be approximated by one of the above near the stagnation region.

Solution does not exist in physical variables at the singularity point;

however, profiles can be generated in transformed variables. The similarity

transformation is a sub-set of the present transformation and hence, for such

type of flows, the solution is independent of the _ direction. Flows with

streamwise pressure gradients such as subsonic wedge and cone flows are

also self-similar due to the transformation. The similarity BL flow equations

are either 2-D or axisymmetric. Dropping the P,and T1direction gradients in

the 3-D formulation results in the equation set and coefficients given in

Table 7. The coefficients _,2, B3 and B6 are the edge parameters of impor-

tance. Depending on the type of flow, they are evaluated as given below.

Flat Plate Flow:

For the case of flat plate, us=hi=h2=1, pel_e=l and -_--_=0, resulting in,

A2 = -x oq 1 ; B3 = D3 = -A2 ; B6 = 0

This formulation is also valid for supersonic wedge flows if conditions down-

stream of the oblique shock are specified as free-stream.

Supersonic Flow Past a Cone of Half-angle O_h:

This axisymmetric flow additionally involves the metric h2 which is a

function of _. If the free-stream conditions correspond to conditions down-

stream of the shock, then,

1

Ue -- Pete = 1 ; h 1 = COS((Xh) , h2 = _:ri , where ri = local radius = _ tan(o_h)

With _ being measured along the cone axis, Sl=h 1 F_. Under these condi-

tions,
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Table 7. Summary of the Transformed SIM BL Equations

Equations:

_.(I1L-wF ) = B3 F2 + B 6

_-_-(131-wH ) = D3FH + D s

Transformation:

F- u

Ue

H"
H-

H;,,,

_F
,L- -F'

a_

_H
;I- -H'

"_/ Ue= V(pep.eSlUe) ; _ = popeS1

s1 = J'hldF= ; F= = x ; Tt = y
0

iPeneS1 p dZ = _(x,y) p dZ

s,w = wSl _-_+ F
ue a_'

Coefficients:

Sl _)(h2¢) sl c)ue

A2 = hlh2(l ) o3_ " B3 = D3 = "' u,, a_

[33=B3+A2 ; Bs=-B3

"2

Href

L, = 1__
i1 { - L II'+wL }

0, e', I, I', I1, I1', 13, 13',

_A2

as in Table 2 (3D BL) with q2 = F2u 2
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slCos(o_h) a_A2 =- _ri p._-e_es1 [_ri_]

Simplification results in, _'2 - -- _ " B3 = D3 = - _'2 " Bs = 0
2 '

The factor of 3 for A2 between flat plate flow and supersonic cone flow is

related to the q-3 factor employed in Mangler's transformation.

Subsonic Flow Past a Wedge with Included Angle _w:

The inviscid flow near the stagnation point follows the rule, ue = u 1 X m,

where u 1 is a constant and m depends on the angle of the wedge as given

2_m The expressions for _ in the _ transformation takes the
by, 13w - m+l

fo rm,

.xfm+l m+l
= _/T _/Pel_eUl Sl 2- (91)

The coordinate _ is measured along the surface; hence, hi=h2=1 and sl= _.

The coordinate _ can also be measured in the flow direction; the metric h1

will then be different, but the expressions for _'2 and B 3 remain the same.

_,2 is then obtained as, _'2 = _ _ - m+l
_)_ 2

B3_ Sl _)ue
ue oq_ _.2=m-_,2 , B6=-m

In the above, Pete is assumed to be constant with respect to _. Flat plate

flow corresponds to m=0; m= 3 corresponds to 3D stagnation point flow

with Cr,s = 1 and m=l corresponds to 2D stagnation point flow.

Subsonic Flow on Cone-tipped Bodies:

The conditions here are identical to subsonic wedge flow; additionally,

the axisymmetric influence is brought in through h2.

h 2 = _r i = _ tan(%) _ Cos(o_h) = _ _ Sin(o_h)

Substitution in the general

B3= 3(m+1 )
2

corresponds to m=l, in this case.

expression for _,2 yields A2- m+3 and
2

Three-dimensional stagnation point flow with Or, s = 1
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6. REVERSE TRANSFORMATION

Once the solution is obtained in computational coordinates ( _, _1, _ ) in

the form of transformed variables F, G, F', G', H, H', w and 0, there is need

for a reverse transformation by which the solution and profiles can be

expressed in physical quantities. It is also necessary to calculate quantities

such as boundary layer and momentum thickness values, skin friction

coefficients, streamline angles, velocity profiles, temperature profiles and

heat transfer to the wall in physical units. For transition and turbulence cal-

culations, derivatives of u*, v*, T* in x*, y*, z* coordinates are also of interest.

The reverse transformation for the general 3D case is discussed in the fol-

lowing pages. The following quantities are assumed given:

[] _, F, G, H, w, 0, I, 11, 12, 13 and their normal derivatives are known as part
of the solution.

[] _, 1"1,Ue, Vr, Te, Pe, _e, hl, h2 and g12 are the known edge conditions and

assumed constant for a given profile.
t

[] u*, Tr*of, Hr*ofand L*, _rof and Reref are the known reference quantities.

In the general case of transformation from ( x, y, Z ) to ( _, 71,_ ), the

gradients of any function f in the transformed coordinates is given by,

[ix]_'n fY

_'t; z
I'11f_ = x_ y_

t; _; y;

The reverse transformation is given by,

fy = _y

For the present 3D BL transformation,

1_y _y f.n

_=x ;_l=y

= _(x,y) j'p d2
0

_(x,y) =

/
_ Me

po;-os,= po.-;s,
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The following conditions are valid:

x_ = _x = Y_ = T]y = 1

y_ = _y = x_ = my = 0

Since the two square matrices are inverses of each other,

[io[ o'xI [ oilI I _y = I

o 2_j o _ o

From the above, we get the following relationships:

(92)

= a:t . a_ (93)
ax a_ 02

= a2 . a_ (94)
ay aT] a_

(32 (32
The quantities -_- and _ correspond to the boundary layer growth rates in

v, I

the physical plane in the two stream surface directions and can be obtained

from the solution. Finally,

Ix]I:fy = 1 -2_ z fTi

0 _p

(95)

It may also be noted that fz = "Yt-_ref fz from equation (7).

au*

For example, _x* ' the streamwise velocity gradient in physical units can be

obtained as,

au___.*= .(3u u_ = __u_ [aFue a2a_au]ax* ax L* L* a_ a_ (32 a_

u: oz ]
L" L a_ q-_rofuovP-_ F'J
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The righthand side terms are completely known from the solution and

can be calculated.

The boundary layer thickness tx, p is defined as the normal distance z" at

which (U/Ue)= p. For example, tx,o.99 is the boundary layer thickness

corresponding to u = 0.99 ue. From the transformation we can write,

, L* _iPl ,,_/ _l,eSl r_x'ptx,p - __ o Pd_ = L* PeueRere , ! Od_ (96)

where _x,p refers to the _ value at which F is equal to p. Similarly,

L* _;iP 1 d_ = L.,_ I_eSl "Pty,p = __ o P peueRere f !e d_
(97)

where _y,p refers to the _ value at which G is equal to ( p ve/v r ) .

The displacement thickness in x direction is defined as,

8x= f )dz"
0 PeUe

oo F az* d_= !

PeueRere f ! (e - F ) d_
(98)

The momentum thickness in the x direction is defined as,

oo

ex = ! pu (1 u )dz*peUe Ue

= L*
_eSl ]1_ ,,_PeueRere f ! F (1 - F ) d_

Similar expressions can be written for (Sy and ey.

(99)

The following transformations can be obtained from the basic definitions.

u* = F ue u* (100)
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V _ *= G Vr uoo (1oi)

T* = e T e Tre f (102)

(103)

p = Opep_, (104)

I.I, = 0 Iile Ilre f (105)

z" = L''_/ l_esl }ed_
PeueReref 0

(106)

The skin friction coefficient Cf,x__oo is given by,

2_w _ 2 • au J

Cf'x--°° - *_ *_ * *2 gw-_-:'z*l
p=uoo p_u=

w

In terms of computed quantities, this can be written as,

,U'w = I'l,w Ow ,u,eP-r'of

OqU_* U_*Ue'_/-Rerof U_*

az" w = L* _2F'l = _ ue "_R-eref _ Pw Fww L

_ 2

and hence, Cf,x__oo _ _ uo Pe #e II,w F'w (107)

The skin friction coefficient Cf,x_ o based on the edge conditions is given by,

2 '_w Cf,x-oo

Cf'x-e - *2 -- (108)
peuo2

The skin friction coefficients in the y direction are given by,

2
__r_--_--- _ Vr Pe I% 12,wG'w (I 09)
_/n_ref

and, Cf,y_e _ Cf,y_oo
 ,,uo2 (I 10)
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The boundary layer normal velocity w* is of interest in flows where mass

injection or suction is employed at the wall. In such cases, w w the value of

normal velocity at the wall is to be specified as a boundary condition, which

in turn has to be calculated from ww, the physical suction or injection velo-

city. From equation (33) we get

W SlF_ Sl Vr_ ] u, a== w- hl ax- h_'G Ue _)y s 1 c]_

Substituting for W, _-x and aa-_-y,

e

U_,
W = __ U e

_/Reref

we get,

+G
Vr o_2:.]h2u e aT1

(111)

The normal velocity at the wall is given by,

t

Ww = u,_Ue Ww 1
"_ref Sl _ PW

Pe_eUe

Sl

W

(;) W (112)

The heat flux at the wall is given by

• aT*
,_w= -kw_ - liw% _. aT I aa___z.iG /ref'-_'J w W

Substitution and simplification gives,

qw =

* *2

IJ,refU_
T e 13w e'wPelJ,eRerefV:_:

L* _1

A positive heat flux indicates heat flow in the positive z direction.

tities ew and H' w are related by the expression (see also eq. 13),

H' w

e'w: T._

(113)

The quan-
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7. DISCRETIZATION OF EQUATIONS

The two transformed 3D BL momentum equations (equations (40) and

(44)) are:

_) _)F .. _)F2 _ oqFG

a_a_='_';'(ll_;--wF) = _1"_'£"o_ + _2--_- + B3 F2 + B4FG + B5G2 + B60

oqG .-. _)FG .. _)G2

_-(12-_--wG) = L;1--_- + L;2--_- + C3 F2 + C4FG + C5 G2 + C68

To represent these equations in a vectorial form, define a vector i_ as,

oqF

11-_--wF

o_G

12---_--wG

F

G

I1L-wF

12M-wG

F

G

(114)

The normal derivative of the vector can be obtained from the momentum

equations. The first two elements of i_' thus correspond to the RHS of the

momentum equations.

2
oqF _)FG 2 2

BI-_-+B2--_--+B3F +B4FG+BsG +B60

2
,, _)FG oqG 2__ 2

"-'1 oh_ +C2 o_ +C3F +C4FG+CsG +060

L

M

(115)

i_" can be obtained by differentiation as:

a a

2B1 _ FL+B2-_ " (FM+G L)+2B3FL+B4(FM+G L)+2BsG M+B60'

01 _ (FM+G L)+2C2 _"_" G M+2C3FL+C 4(F M+G L)+2 C5G M+C68'

lrlD _ C2.B ___ =:
_Tt_ul"-_'- -,- 2_'-_-r + B3 F2 + B4FG+B5G2+B6e+L(w-II')]

1 o_ 1 _) 2

_2 [C1F-_-G+_C2_q--q G + C3 F2 + (34FGCsG2+B6e+M(w-12')]

(116)
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The first two elements of C_" are obtained by taking the _ derivative of the

first two elements of C_'. The last two elements of C_" are obtained by

expanding the LHS of the momentum equations and rearranging to get

expressions for L' and M'.

For example, from the x momentum equation,

11L'+LI 1'-wL-Fw' = RHS

L' L 1 w'
= i-_- (w- I1') +_ (F +RHS)

The term F w' is then substituted by the continuity equation (36) and

simplified.

Discretization in _ Direction

The indices i, j and k are used to denote grid locations in the _, tl and

solution space. The solution of the equations is obtained implicitly in the

direction and explicitly in the F_and T1directions. Hence, the discretization

procedure for the _ direction can be discussed independently of the other

two directions. Assume for the present that for any function f_ the partial
i_f - -

derivative _- can be written as ( a 1 fi, j + {af} ), where {af} is a symbolic

notation for the weighted sum of the function values at other known loca-

tions. In a 3-point upwind differenced formulation, {aT} = a2_t_1,j + a3fi-_2,j.

The coefficients a 1, a2 and a 3 etc. depend on the grid distribution. Similarly,

0__f_ffor the present will be represented as b 1 f_,j+ {bf}. The details of
aT1

differencing and T1 differencing formulations will be dealt with at a later

stage. For the present discussion on _ differencing, we are only interested

in the profile at a given (i,j) location.

A finite difference approximation accurate to fourth order in 4, for uni-

form or non-uniform spacing is used here. The O(A_ 4) procedure allows the

use of substantially fewer mesh points normal to the wall boundary than

traditional O(A_ 2) procedures for a specified level of accuracy. A two-point

compact scheme is used which is accurate to O(A_ 4) for uniform or non-

uniform grids (see also Ref. 7). At each point midway between k and k-l,

the following equation can be written (A_ = _k-_k-1 ):

C_k- _k_l- A-_-2 [C_'k + i_'k_l] + _22 [_"k -- _"k_l] + O(A_S) = 0 (117)
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The vector equation given above consists of 4 equations involving the
unknowns ( F, G, L, M ) at locations k and k-l. If km is used to denote the
total number of _ direction grid points, then the above discretization can be
applied to (km-1) pairs of points yielding 4x(km-1) equations in

4xkm unknowns. The additional 4 equations are simply the no-slip boundary
k I '.... "_ ""_conditions F = L_'_= 0 at = F - I G = V_V r '_* L,-I_m (RI AcloA)._W(::l.l I ) i_l.l IU -- , ,=.,.L ..............

Thus, the solution of a profile at a given point (i,j) on the body reduces to

the inversion of a system of size 4xkm. It will be shown below that the sys-

tem is in a block triagonal form with km number of (4x4) block equations.

The equation (117) is first rewritten in the following form for conveni-

ence. To fourth order accuracy,

_k -- _k-1 -- Cl_k'-- 02_k-1' -- C3_k" -- C4_k-1" = 0 (118)

where,

As an example, let us consider the first element of equation

complete expanded form is as below:

(IlL - WF)k - (IlL - WF)k_ 1

C1 = C2 = A_/2 ; c3 = - A_2/12 ; c 4 = A_2/12

(118). The

I_ _)F2 _ aFG }k- Cl llJl-'_ - + _2---_--- + B3 F2 + B4FG + B5 G2 + B6e

-- C2ll31--_- + 1_2--'_ + B3F2 + B4FG + BsG2 + B6e -1

-c3{2BI_L + B2a-_-(FM+GL)

-c4{2BI-_L + B2-_-(FM+GL)

+ 2B3FL + B4(FM+GL ) + 2B5GM + B6e'}k

+ 2B3FL + B4(FM+GL) + 2B5GM + B6e'}k_l =
0

a a
Since we are interested only in _ differencing at present, the _ and

derivatives can be replaced by using the symbolic notation. We can also

drop the i,j indices for convenience resulting in,
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(IlL - WF)k - (IlL - WF)k_ 1

- C1{BI[alF2+{aF2}] + B2[blFG+{bFG} ] + B3F2 + B4FG + B5G2 + B60}k

-c2{Bl[alF2+{aF2}] + B2[blFG+{bFG}] + B3F2 + B4FG + BsG2 + B60}k_l

- c3f2B 1
[a 1FL+{ aFL}] + B2[i:) 1(FM+GL)+{ b(FM+GL)}] + 2B3FL

+ B4(FM+GL) + 2BsGM + B6e,'lr
Jk

- c4t2B l[a 1FL+{aFL}]
+ B2[b I(FM+GL)+{b(FM+GL) }] + 2B3FL

+ B4(FM+GL) + 2BsGM + B60'_r-lJk
=0

The above equation in non-linear in the unknowns F, G, L and M. The

equation is linearized by using Newton's linearization with successive itera-

tion to a converged solution. If we denote by n, the current iteration

number, the non-linear terms at iteration level n can be approximated in

terms of quantities at level (n-l). For example, Fn2 is linearized as,

F 2 = (Fn_ 1 + 6F) 2 = F2_1 + 2Fn_15F

where, 5F = F n - Fn_ 1

(_F is the iterative update that is required at each iterative step. As another

example, the linearization for FG takes the following form:

FG = (Fn_I+6F) (Gn_I+6G) = (FG)n-1 + Fn-16G + + Gn-16F

where, 6G = G n - Gn_ 1

The other non-linear terms in the above equation can be linearized in a simi-

lar manner. The complete linearized system (corresponding to the first ele-

ment of the system of equations given by eq. (118)) is then as given below.

We drop the iteration level index (n-l); all the known quantities in the fol-

lowing equation correspond to the (n-1)th iteration level.
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[ 11(L+6L)- w(F+6F) ]k -- [ II(L+6L) - w(F+6F) ]k-1

- Cl {131[al F2+2a1F6F+{ aF 2}] + B2[b 1FG+b 1F6G+bl GaF+{ bFG }]

+ B3[F2+2F6F] + B4[FG+F6G+G6F ] + Bs[G2+2G6G] + B6O t.
JK

- c2{B1 [al F2+2al F6F+{aF2}] + B2[bl FG+bl F6G+blG6F+{ bFG }]

+ Ba[F2+2F6F] + B4[FG+F6G+G6F] + Bs[G2+2G6G] + B6e}k_l

- c3 {2B1 [al FL+al F6L+alLaF+{ aFL}]

+ B2[b 1(FM+GL)+b I(FSM+M6F+GaL+L6G)+{ b(FM+G L)}] + 2B3FL
%

+ 2Bs(GM+GSM+M6G ) + B6e' L+ B4(FM+G L+F6M+MaF+GaL+LSG)

- c4 t2Bl[al FL+al FaL+al LaF+{aFL}]

f,

+ B2[b 1(FM+GL)+b 1(F6M+M6F+GSL+LaG)+{ b(FM+GL) }] + 2B3FL

B4(FM+GL+FSM+MSF+GSL+LSG) + 2Bs(GM+GSM+MSG ) + B6e'}k_l
+

The unknown quantities in the above equation are,

=0

6Fk_l

6Gk_l

6Lk_1

6Mk_l

and, _k =

r
:6F k
I

aGk

6Lk
i

iaMk

(119)

Let us denote the coefficient of CSFk_1 by ak_. The first subscript 1 refers to

the fact that this coefficient belongs to the first element of equation (118).

The second subscript 1 refers to the fact that this coefficient corresponds to

the unknown 6F. The integers 2, 3, or 4 in the second subscript position

refers to it being the coefficient of 6G, 6L or 6M. The superscript k denotes

that the coefficient belongs to the discretization at k and a point just below it.

From the above equation, we can write down all as,
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akl = Wk_l-C2[2F(a 1BI+B3)+G (bl B2+B4)]k_l-C4[2L(al BI+B3)+M(bl B2+B4)]k_I

Let us denote by bkl, the coefficient of 8F k. This coefficient can be written

as,

bkl = Wk-C l[2F(a i BI+B3)+G(bl B2+B4)]k--C3[2L(a 1BI+B3)+M(b 1B2+B4)]k

All the other coefficients can be similarly derived. Note that 'a' refers to

coefficients of _k-1 and 'b' refers to coefficients of _k. The same procedure

can be repeated for the other 3 equation elements. The discretization thus

yields 16 coefficients of the type alkm and 16 coefficients of the type blkm

corresponding to the _ differencing between k and (k-l). All the terms which

The RHSare not functions of _k-1 or _k can be taken to right hand side.

coefficient rk for the present case is then,

I,t _,

ri" = - (ilL - Wl-)k + (ilL - WF)k_l

+ Cl {Bl[al F2+{aF2}]

+ c 2{Bl[al F2+{ aF 2 }]

+ 03 {2B1

+ B2[blFG+{bFG} ] + B3 F2 + B4FG + B5G2 + B68}k

+ B2[blFG+{bFG} ] + B3F2 + B4FG + B5G2 + B6e}k_l

+ C4f2B 1

[al FL+{aFL}] + B2[b I(FM+GL)+{b(FM+GL) }] + 2B3FL

+ B4(FM+GL) + 2BsGM + B6e"lt
Jk

[alFL+{aFL} ] + B2[bl(FM+GL)+{b(FM+GL)} ] + 2B3FL

+ B4(FM+GL) + 2BsGM + Bse'}k_l

Similar expressions can be arrived at for rk, rk and rk.

system thus reduces to the form,

{a}l_m_k-1 + {b}l_m_k = [r]l k

The linearized

(120)

The 4x4 matrices of {a}l,m, {b}l,m and the 4xl vector [r]l are listed in Table

8.
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Table 8. Coefficients of the Momentum Equations

Discretization at (k+1/2) with A_ = _k-_k-1

Cl = A_/2 , 02 = A_/2 , c3 =-,_2/12 ,

All quantities evaluated at iteration level (n-l)

c 4 = A_2/12

all =

a12 =

a13 =

a14 =

a21 =

a22 =

a23 =

a24 =

Wk_1-C212 F(al B I+B3)+G (bl B2+B4)]k_l-C412 L(al BI+B3)+M(bl B2+B4)]k_I

-c2[F (b 1B2+B4)+G (2 B5)]k_l-C4[L(b 1B2+B4)+M (2 Bs)]k_l

-(I 1)k_l-C4[2F(al BI+B3)+G (bl B2+B4)]k-1

-c4[F(bl B2+B4)+G(2Bs)]k_I

-c2[F(2C3)+G(alCI+C4)]k_I-C4[L(2C3)+M(alCI+C4)]k-1

Wk_I-c2[F(alCI+C4)+2G(blC2+Cs)]k_I-C4[L(alCI+C4)+2M(blC2+C5)]k-1

-c412 F(C3)+G (al C1+C4)]k_1

-(12)k_ 1-c4[F(al C 1+C4)+2G (bl C2+C5)]k-1

a31 = -1 -c4/(I 1)k_1[F(a 1BI+2B3)+G (b 1B2+B4)]k_ 1

a32 = -c4/(11 )k-1 [F(B4)+G (2Bs)+B2(b1F+{ bF})]k_l

a33 = -c2-04/(11 )k-1 [W--I'l]k-1

a34 = 0

a41 = -C4/(12)k_ 1[F(2C3)+G (C4)+C 1(a 1G+ {aG })]k_l

a42 = -1 --C4/(12)k_ 1[F(a 1C 1+C;4)+G (b 1C2+2C;5)]k_ 1

a43 = 0

a44 = -C2-C4/(12)k_ 1[W-1'2]k_ 1

bl I = Wk--Cl [2 F(al BI+B3)+G (bl B2+B4)]k-C312 L(al BI+B3)+M(bl B2+B4)]k

b12 = -Cl[F(bl B2+B4)+G(2Bs)]k-C3[L(bl B2+B4)+M(2Bs)]k

bl 3 = -(11 )k-C312 F(al BI+B3)+G (bl B2+B4)]k

b14 = -c3[F(blB2+B4)+G(2Bs)]k

b21 = -c 1[F(2C3)+G(a 1CI+C4)]k-C3[L(2C3)+M(al CI+C4)]k

b22 = Wk--Cl[F(a 1CI+C4)+2G(bl C2+C5)]k-C3[L(alCI+C4)+2M(blC2+Cs)]k

b23 = -c3[2F(C3)+G(al CI+C4)]k
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b24= -(12)k-C3[F(alCl+C4)+2G(blC2+Cs)]k

b31 = -1-C3/(ll)k[F(a 1Bl+2_,3)+G(b 1B2+_,4)] k

b32 = -c3/(I 1)k[F(B4)+G(2Bs)+B2(bl F+{ bF})]k

b33 = -Cl-C3/(ll)k[W-I'l]k

b34 = 0

b41 = --c3/(12)k[F(2C3)+G(_4)+C1 (alG+{ aG})] k

b42 = -1-c3/(12)k[F(a 1C1+(_4)+G (b 1C2+2C5)]k

b43 = 0

b44 = -Cl-C3/(12)k[W-1'2]k

'1 -- k,1 _ -- vv, /k -I- _,1_ -- vv, ]k-1

+ c 1{BI[alF2+{aF2}]

¢"

+ c2tBl[alF2+laF 21]
%.

+ c3{2B1[al

+ c4 f2BI[alFL+{

1
+ B2[blFG+{bFG}] + B3 F2 + B4FG + B5 G2 + B6elk

+ B2[blFG+{bFG}] + B3 F2 + B4FG + B5 G2 + Bse}k_l

FL+{aFL}] + B2[bl(FM+GL)+{b(FM+GL)}] + 2B3FL

+ B4(FM+GL) + 2BsGM + Bse'}k

aFL}] + B2[bl(FM+GL)+{b(FM+GL)}] + 2B3FL

+ B4(FM+GL) + 2BsGM + B6e'_-l.lk

= - (12M - WG)k + (12M - WG)k_ 1

+ 01 tC.I[alFG+{aFG }] + C2[blG2+{bG2}] + C3F 2+ C,FG + CsG2+ 06e }k

+ c2'_CI[alFG+{ aFG }]+t. C2[blG2+{ bG2}] + C3F2 + C4FG + CsG2 + C6(_ _'-1Jk

%
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+ c3{CI[al(FM+GL)+{a(FM+GL)}] + C2[blG2+{bG2}] + 03 F2

+ C4(FM+GL) + 2CsG 2 + B6e'}k

+ c4{CI[al(FM+GL)+{a(FM+GL)}] + C2[blG2+{bG2}] + 03 F2

+ C4(FM+GL) + 2C5 G2 + Bse'}k_l

r3 = -Fk+Fk_ 1+01Lk_l+o2Lk

+03/(11) k tv2g , [a 1F2+{ aF2 }]+B2G[bl F+ { bF }]+B3 F2+B 4FG+BsG2+B6B+L( w-I I') Ik
L

+04/01 )k-1 #'/2B, [al F2+ {aF2}]+B2G[bl F+ { bF}]+[33 F2+B4 FG+B5 G2+B6e+L(w-I' ') tk-1
L

r4 = -Gk+Gk_ 1.-I-.c1Mk_I+C2Mk

+03/(12)k { '/_2[a' G2+{ aG2 }]+C1F[blG+{ bG }]+C3F2+_4FG+CsG2+C6e+M(w-12')}k

+c4/(,2)k_I {'/_C2[alG2+{ aG2} ]+C,F[b,G+{bG }]+C3F2+C4FG+_5G2+Cse+M(w-12") }k_I
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Discretization of the Energy Equation

To simplify the solution algorithm, the energy equation is solved decoupled

from the momentum equations. The discretization of the energy equation in

the _ direction can be done in a manner identical to the momentum equa-

tions. The transformed energy equation (equation (47)) is given below:

a_. oTFH _ oTGH(131-wH) = D1-_- + U2T_ + D3FH + D4GH + D5 (121)

The i_, i_, and i_" vectors in this case are as given below:

1) oTFH oTGH ]..
- l N J ' - l I J

pr

[i)I_" (FI+HL)+D2_" (GI+H M)+D3(FI+H L)+D4(GI+H M)+D' s

1 [D 1 oTH i)H ,
_'3 F"_-+D2G-_q +D5+I (w-I 3)]

Application of the _ differencing formula, equation (1 18) to the above system

yields two equations in H and I. The coefficients of this system consists of

F,G,L and M which are known at iteration level n, since they are solved

decoupled. The equations are therefore linear in H and I. Iteration is how-

ever required since F,G,L and M are not the final converged values. As an

example, the first equation of the discretized system is as follows:

(131- WH)k - (131- WH)k_l -

-- c2fDl[al

- c3fDl[al

-Cl{DI[alFH+{aFH}] + D2[blGH+{bGH}] + D3FH + D4GH + DS}k

FH+{aFH}] + D2[blGH+{bGH}] + D3FH + D4GH + DS}k_ 1

(FI+H L)+ { aF(FI+H L) }]+D2[b 1(G I+HM)+{ b (GI+H M) }]

+ D3(FI+H L)+D4(GI+H M)+D5'}k

- c4{D 1[a 1(FI+HL)+{aF(FI+HL)}]+D2[b 1(GI+H M)+{ b(GI+H M)}]
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+ D3(FI+H L)+D4(GI+H M)+D5'}k_I

Here we solve for H and I at each point k, rather than the solution change at

each iteration, 5H and 51 (note that the system for the momentum equations

was set up to solve for the 5 values). This is because there is no need for

linearization in this case, and hence solving for H and I directly yields a

simpler system. Defining the unknown vectors as,

gk-1 = Lik_1 and, gk = Ik

one can now write down the coefficients corresponding to the system,

k _ {b}lkm_k [r]lk{a}l,rn k-1 + =

For example, ak2, the coefficient of Ik_1 from the first equation is given by,

a12 = -(13)k-l-C4[F(al DI+D3)+G(bl D2+D4)]k-1

The coefficients {a}l,m, {b}l,m and [r]lk are listed in Table 9.

Boundary Conditions for Momentum Equations

The _ differencing presented above is a two-point fourth-order accurate

scheme. However, the application of the _ direction boundary conditions

results in the discretized system being block tri-diagonal. The details of this

feature are presented below.

The discretization at each mid-point of a solution profile at a fixed x and

y location yields 4x(km-1) equations in the 4xkm unknowns, {_k}k=l,km.

The remaining 4 equations to close the system are obtained from the con-

straints at the wall and BL edge. These correspond to 5F 1 = 0, 5G1 = 0 at

the wall and 8Fkm = 0, _Gkm = 0, assuming that the initial profile used is con-

sistent with the no-slip conditions of F 1 = 0, G 1 = 0 and the edge conditions

of Fkm = 1 and Gkm = Ve/Vr. An alternate boundary condition at BL edge is

_Lkm = 0, 8Mkm = 0 corresponding to the edge gradients being equal to zero.

However, since the initial profile need not satisfy this condition exactly to

fourth-order accuracy, this alternative is not preferred. The boundary condi-

tions are thus easy to implement and do not compromise the fourth-order

accuracy of the method.
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Table 9. Coefficients of the Energy Equation

Discretization at (k+1/2) with _ = _k-_k-1

C1 = A_/2 , C2 = A_/2 , c 3 = -A_2/12 , C4 = A_2/12

F, G, L, M are from the solution of momentum equations at iteration level n

Coefficients are corresponding to the system,

{ailkm_k_l + [bilkm_k - [r]l k

where, gk-1- LIk_ 1 and, _'k = ik

al 1 = Wk-l"c2[F(al DI+D3)+G (bl D2+D4)]k_l-C4[L(al DI+D3)+M(bl D2+D4)]k_1

a12 = -(13)k-l-C4[F(al DI+D3)+G(bl D2+D4)]k_1

a21 = -1 -C4/(13)k_l[Fa 1DI+Gb 1D2]k_1

a22 = -C2-C4/(13)k_l[w-1'3]k_ 1

bll = Wk-C1[F(a 1DI+D3)+G(bl D2+D4)]k-C3[L(al DI+D3)+M(bl D2+D4)]k

b12 = -(13)k-C3[F(a1DI+D3)+G(b 1D2+D4)]k

b21 = -1-c3/(13)k[Fa 1DI+Gb 1D2]k

b22 = -%-C3/(13)k[W-1'3]k

r 1 = c 1[D 1{ aFH }+D 2 { bG H }+D5]k+C2[D1 {aFH }+D 2 { bG H }+D5]k_ 1+

c3[D 1{ a(FI+GL) }+D2{ b(GI+H M) }+D5']k+

c4[D 1{ a(FI+GL) }+02 { b(GI+H M) }+D5']k_ 1

r2 = c3/(13)k[D 1F {aH }+D2G { bH }+Ds]k+C4/(13)k_ 1[D 1F {aH }+D2G { bH }+Ds]k_ 1
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At the wall, the boundary conditions of 5F1= 0, (3G1 = 0 with 5L1, (3M1
as the unknowns shifts the discretized equations down by two rows. A block
tri-diagonal system is produced as a result. Fig. 3 shows the structure of
the block-triagonal system near the wall boundary. The sub-diagonal, diago-
nal and super-diagonal blocks O_k,13k and 7k are given by,

13k =

_k =

alkl ak2 ak3 ak2

akl ak2 ak3 ak4

0 0 0 0

0 0 0 0

blkl bk2 bk3 blk4

b2kl bk2 bk3 b2k4

ak_-I ._k+l .,k+l ._k+l(=32 (=33 (=34

ak_-1 ak_-I a_ 1 ak_ 1

0

0

"_k = )k_-I

bk_-1

0 0 0

0 0 0

bk_ I bk; I bk_ I

b k+l l., k+l bk_l42 u43

The system can thus be represented as:

(_k_k_l -I- _k_k -I- _k_k+l = (_k

Note that _k involves quantities at k, k-1 and k+l ;

k-1 and k; 7k involves quantities at k and k+l.

block-triagonal system is of the form,

(Sk: Irk, rk ' rk+l ' r4k+lIT

0{,k involves quantities at

The RHS vector of the

The boundary conditions at the wall and BL edge modify the diagonal block

and the RHS vector resulting in,

131 =

1 0 0 0

0 1 0 0

_311a312 a313 a14

]421a422 a423 a424
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bk_

bk_

_km ---- 1

0

81= [0,0, r2, r42 ] T

=

bk_ bk_ bk_

b_ bk_ b2k_

0 0 0

I 0 0

_Irk,km5k m m, 2 , O, 0

Boundary Conditions for Energy Equation

Two types of boundary conditions at the wall can be specified. If the

wall is insulated or adiabatic, zero heat flux condition at the wall is

prescribed by setting Iw= 0. If the wall temperature or heat flux is

specified, then the corresponding Hw or Iw is calculated from equation (13)

or equation (113) and used in the RHS vector 51. If Iw is specified, the 131

and 81 blocks at the wall become,

131= a22 ; 51 =1 2

If total enthalpy or temperature distribution is specified, the corresponding 131

and 81 would be,

131 = a " 81 =' r22

The BL edge boundary condition of Hkm = He (see equation (15)) modifies

_km and 5km blocks as below:

[b:_n b_ _ ] [ rkml ]
_km = ; 5km = L He

Discretization of the Continuity Equation

The continuity equation is solved explicitly assuming that F, G, L and M

values are known. The equation can be integrated starting from the wall

using the fourth order scheme. The transformed normal velocity w w at the

wall is required to start the integration. This can be calculated using equa-

tion (112) from a specified mass injection or suction rate at the wall, (p'w*) w.
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The integration is performed using the following formula:

At2 .Wk = Wk_l + (W'k+W'k_l) _ -V..,'L " ,12 (w k-W k-l) k=2,3 .... km

where, w' _, _F - _)G
= 1-_- + _,2F + A3--_- + h,4G

and w" - onL ~ _)M
= A1-_- + _,2L + A3--_-- + h,4M

(122)

Normal Grid Exponential Stretching

The _ transformation takes into account the laminar boundary layer

growth. Usually, _e=8 is sufficient. However, for turbulent flow, with the

present transformation, the boundary layer edge may extend as far as

_e=i00. A stretched grid may be of advantage in such a case.

For incompressible zero pressure gradient flow, a uniform distribution of

points in _ produces a uniform distribution in z* with correct scaling (propor-

tional to q_) for boundary layer growth. For compressible laminar flow with

pressure gradient, the distribution obtained in the physical plane will be
different.

In either of the above two situations, if a different normal grid distribu-

tion is desired, this can be provided by using an exponential stretching

parameter, ke. Since the normal differencing is basically a 2-point scheme,

fourth-order accuracy is obtained for stretched grids as well. The stretching

parameter is defined as,

(123)

As an example, the table given below gives the minimum and maximum

grid spacings resulting from different values of the stretching parameter ke.

The values of _e and km are assumed to be 8.0 and 41 respectively. The

grid distances next to the wall and the boundary layer edge are tabulated.
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ke A_ (k=2) A_ (k=km)

1.0 0.2 0.2

1.005 0.1812 0.2201

1.01 0.1636 0.2412

1.02 0.1324 0.2867

1.05 0.0662 0.4440

1.10 0.0181 0.7437

Discretization in the 4 Direction

The BL solution is obtained by a marching scheme in the 4 direction.

Hence all c3/_4 quantities at a given location (i,j) can be written explicitly in

terms of quantities at (i,j) and known values at (i-1), (i-2). For second order

accuracy, a three-point upwind differencing formula is used. For example,

the streamwise gradient of F is approximated by,

_-_li,j = al Fi,j + a2 Fi_l, j + a 3 Fi_2, j (124)

The coefficients al, a 2 and a3 depend on the grid distances,

They are given by,

al = (A4i,j2 _ A_i_ 1,j2) / Z_

a2 = - A4i,j 2 / A

a3 = A4i_ 1,j2 / A

A -- A4i,j A4i_ 1,j ( A_i,j + A4i_1 ,j )

When i=2, the first order .formula is used with,

(125)

al=1/A42=1/(42-41) ; a2=-A42 ; a3=0

A blending function co is provided

scheme to the second order scheme.

become second order at i _>i2, then,

for transitioning from the first-order

For example, if the differencing is to
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(o=0fori=2

(o = 1 for i _>i2

(o = (i-2)/(i2-2) for i2 > i _>2

= co [second order formula] + (l-m) [first order formula]
i,j

Referring to our earlier short notation,

{aF} = a2 F_I,j + as Fi-2,j

Discretization in the T! Direction

In order to provide flexibility in formulation, the differencing in 11 direc-

tion is designed to include a number of points surrounding a given location

(i,j). The points included in the finite difference formula are,

At level i: j, j-l, j+l (denoted as points j, jl and j2)

At level i-1: j, j+l, j+2, j-l, j-2 (denoted as points j3, j4, j5, j6 and j7)

(b7) (b6) (b3) (b4) (b5)

i-1 ,j-2 i-1 ,j i-1 ,j+2
Level i-1

jl j j2
O- ....... O- -0

i,j-1 i,j i,j+l

(b0) (bl) (b2)

Leveli

The finite difference formula is written as,

aF I " =
i,j b°Fj + bl Fjl + b2Fj2 + b3Fj3 + b4Fj4 + b5Fj5 + b6Fj6 + b7Fj7 (126)

Some of these coefficients bo,bl,..,b7 may be set to zero to represent

different schemes.

The present method is based on an explicit march in the q direction.

Since the method is not implicit in TI, b2 will be zero for a positive TI direction
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sweep and bo will be zero for a negative 11 direction sweep. For the case

called Krause zig-zag differencing ('Z' scheme), in which a positive 1"1direc-

tion sweep in used, the coefficients are:

1

2All j+l

1
bl=_ , bo =

2Allj

1
b 3 = , b4 =

2All j+l

b2 = bs = b6 = b7 = 0

The ATI-S are grid distances defined as below,

Allj = llj - llj_l ; All j_ 1 = llj_ 1 - llj_ 2

_llj+l = llj+ 1 - llj ; All j+2 = 11j+2 - llj+l

(127)

The five point differencing formula used by Tassa e et al. is an implicit

cross-flow dependent differencing scheme. The finite differencing molecule

is rotated depending on the local sign of v. This type of differencing can be

used when points on the entire i line are solved simultaneously (i.e., implicit

solution in 11) and is used here in solving the surface Euler equations. The

coefficients for this case are as given below:

(b7) (b6) (b3) (b3) (b4) (b5)

j7 j6 j3 j3 j4 j5

\o. ...... o- ...... o o- .... o _

>0",,,, I i
I I

v (bO) l(bl ) (bl)', (b2) v<O
o .o 6- .....

jl j j j2

v>0 v<0

b 1 = 1/z_llj

b o = - 1/Z_llj

b2 = b4 = b5 = 0

b3 = 1/(Allj + All j_l)

b6 =- i/A_lj_l

b I = - 1/A'qj+l

b 2 = 1/,_,T]j+I

bl = b6 = b7 = 0

b 3 = 1/(ATlj+I + A'qj+2)

b 4 = 1/A'rlj+2

(128)
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b7 = AI]j/{AI]j_ I (AT]j + AT]j_1) } bs = _ AT]j+I/{AT]j+2(AT]j+I + AI"]j+2) }

The crossflow dependent finite difference can be represented by a sin-

gle formula as given in Ref. 9, if we define an ¢ which takes the value of -1

for v > 0 and +1 for v < 0. At the boundary-adjacent points of j=2 and j=jm-

1, the five-point scheme cannot be applied if the point j+2¢ point falls outside

the computation region. In this case, a simple two-point scheme involving

the boundary point and the boundary-adjacent point is used. This scheme

(called the 'L' scheme here) has the following coefficients:

b I=I/A_j ; b o=-l/A_j (129)

b 1 = b3 = b4 = b5 = bs = b 7 = 0
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8. 3D BL SOLUTION PROCEDURE

The solution procedure can be explained with the help of Fig. 4. The

figure shows the 3D BL grid projected to the (_, T1)plane. The grid lines in

the _ direction are thus normal to the plane on which the figure is drawn.

Solution at an Interior Point

For calculation of the 3D boundary layer at an interior (i,j) location, the

initial boundary plane (i=1 plane) and the side boundary plane (j=l plane)

are assumed to be known. The first step involves the calculation of the i=2

plane which corresponds to a P,direction sweep. The solution along the i=2

plane is obtained by a rl direction march starting from the left boundary.

The solution is thus obtained by sweeping in the j direction from j=2 to jm-1

for a fixed i.

The solution procedure at a particular (i,j) location can be explained

with the help of Fig. 5. The solution is obtained by implicit solution in the k

direction. The F, G, F' and G' profiles at each (i,j) location are obtained by

inversion of a block-tridiagonal system as already explained. To start the

iteration, the profiles are initialized by making them equal to the profiles at

the corresponding (i-l,j) location. The edge coefficients _,i, Bi, Ci and Di can

be calculated from the known edge conditions and metrics. The coefficient

Ds is calculated based on the current solution F, G, F' and G'. The linear-

ized momentum equation is solved first by inversion of the discretized sys-

tem. The continuity equation is then integrated from the given wall condi-

tions to obtain new values of w. Subsequently, the energy equation is

solved. The values of e, e', I, I', Ii and I' i are now updated based on the

current solution (eq.s 49-52). The values of w w and H' w or H w correspond-

ing to the wall boundary conditions are updated based on the current solu-

tion and the input wall boundary values of w w and Tw or Clw (equations 112

and 113). The calculations are repeated iteratively until convergence is

obtained. Convergence is monitored by scanning values of 5F' and 5H'.

The criteria for convergence are:

18F'max I 15H'max I

I F'maxl , IH'maxl < Ea

After convergence of solution at (i,j), calculation proceeds to the next j loca-

tion as dictated by the T! direction sweep. After the entire i line is solved,
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ORIGINAL PAGE 18

OF POOR QUALITY

/
Side bounda

plane

Flow

Initial boundary plane

..... . ....... ; ....... ,....... * ....... , ....... ; ....... +....... , .......

(i,j)
....... i ....... -,,....... • ....... •....... A ....... A....... ,_,...... ,'k...... .A.......

: '.

,_................ :........... _ ..... ;........ - ....... - ........ :................

: 77 direction march i
y ..... • ........ ',........ t ....... • ........ ......... t ....... • ........ : ........ , .......

............................... • i Solution kridwn ...................

.................................-i...Sol utio_-u n known .............

I i i i i i

Fig 4. Solution Sweeps in the stream surface plane
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Initialize F,G,H,F',G',H',Ww

Initialize e, e',l, I', Ii, Ii'

Calculate/3, i, B i, C I, Di

Calculate ai, bi

....................

Solve by fourth-order scheme

the momentum equations
Obtain new F,G, F', G'

I Integrate continuity eq. for w

Solve by fourth-order scheme

the energy equation
Obtain new H, H'

Update e, 0',1, I', Ii, Ii'
t

Update w w from w w and Pw

Check for convergence

I s

j SS

Inputs:
Grid _, 11,

Metrics h 1, h 2, g12

Edge values u e, v e

Reference quantities

Boundary values

ww, Hw or H' w

F,G, F', G',H, H' profiles at

(i-1,j),(i-2,j),(i,j-1 ),(i-1,j+ 1 )

Fig.5 Solution Procedure for Profiles at (i,j)



- 77 -

the solution advances to (i+1) level. The solution at i and i-1 are saved for F_

differencing. Marching in the i direction is continued until proximity to

streamwise separation is indicated by a large number of iterations needed

for convergence.

Domain of Dependence

The differencing and solution march in the T] direction has to honor the

domain of dependence principle for an accurate and stable calculation. The

nature of the 3D BL equations is such that it is parabolic in the _ direction

and hyperbolic in the stream surface direction. On a stream surface, the

characteristics of the equations are the local streamlines. Since the equa-

tions are parabolic in the normal direction, information is transmitted instan-

taneously in that direction. Hence a wedge of region can be identified in the

flow with its vertex on the wall normal line at (i,j) and with its sides coincid-

ing with streamline at the BL edge and the limiting streamline at the wall. In

a more general way, the wedge depends on the ratio (_) in the entire

profile. The velocity vectors corresponding to minimum and maximum

values of (_) determine the domain of dependence. According to the CFL

stability condition, the _1 differencing stencil should be such that the numeri-

cal domain of dependence includes the physical domain of dependence.

The Krause zig-zag or the 'Z' scheme is designed such that the CFL

condition is honored for moderate crossflow reversal situations. The max-

h2A_

imum angle of crossflow in the negative T! direction is hlA-----_. For solution at

a point (i,j), the CFL condition thus amounts to,

< h2Allj+l (130)
u hlA_ i

Alternatively, the stability test takes the form,

GVrhl_i
> -1 (131)

Fueh2z_j+l

Improving the stability margin for a given flow condition involves reducing

the streamwise step size, which effectively increases the domain of depen-

dence wedge angle. Increasing the grid spacing in the T] direction is not a

viable alternative since flow features in that direction are liable to remain

unresolved. If hi = h2 = 1 and A_ = AT1, the 'Z' scheme can handle up to
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135 ° flow direction angle. Frequently, the _ direction spacing is much finer

than the _1direction spacing, which means that even larger crossflow angles

can be handled. The computation at each (i,j) location is designed to check

for CFL stability as given above.

Boundary Solutions

The solution at the initial and side boundaries can be obtained by solv-

ing one of the special subsets of the 3D BL equations given previously.

These equations are in 2D form and can be solved independent of the 3D

region.

For a fuselage-type geometry, the initial plane is generated using the

stagnation point solution. For moderate angles of attack, the stagnation

point on the body is quite close to the geometric extremity. In order to avoid

the complexity of a special transformation and grid, we make the following

assumptions.

(1) The stagnation point is at the geometric extremity

(2) The stagnation point solution is independent of the circumferential angle;

this amounts to assuming Or, s=1 in the stagnation point flow equations.

The initial plane solution thus consists of 3D stagnation point solution

profiles at all j stations on the i=1 line.

The side boundary plane for a fuselage geometry is obtained by solving

the symmetry line equations on the windward line of symmetry. For positive

angle of attack, the windward line of symmetry is usually an outflow line.

There are, however, exceptions to this rule depending on the fuselage

shape. For negative angle of attack, the leeward symmetry line is the

outflow line. In this case, the side boundary at j=jm is calculated and the 3D

solution is calculated by a negative sweep in the 11direction. The last point

at the end of a q sweep is calculated by an 'L' scheme.

For a wing-type geometry, the initial plane of solution is provided by the

attachment line equations. The side boundary presents somewhat of a

problem. If we are looking at a wing-alone geometry, the crossflow velocity

near the wing root may become negative (see Fig. 6). The presence of

such a negative crossflow region depends on the angle of attack and the

wing cross section. For real flow past wings attached to a fuselage, the dis-

placement effect due to the fuselage usually prevents the occurrence of a

negative crossflow region. The flow in the wing-fuselage junction region is

not described by the boundary layer equations. Under such conditions, we
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need a reasonable approximation to the flow near the wing root to start the

3D BL calculation.

Wing
root

I

I

I

x",L } Attachment

,,

Fig.6 Region of Negative Crossflow on a Wing

The method adopted here is to assume locally infinite swept wing flow

conditions at a chordwise plane close to the wing root. If this plane of solu-

tion contains regions of only moderate negative crossflow, a sweep in the 11

direction starting from this plane may provide stable solutions.
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9. INTERFACE PROCEDURE

Our discussion so far assumed that the boundary layer edge conditions

and the boundary layer grid are known to the required degree of accuracy,
._mnnthnA._._ _nd rA_nhltinn ('3ft_,n fh_ rnrr,_rf cn,',r, iflr,'_fir_n t_f fh,', ,',_" rnn-
................. _ .vv_._.v... v=Lv.. _..v _vllvvL v_..*vvlll.,o_.._u_,Jll vi LIly V_a_V vv..

ditions constitute the most important part of a boundary layer calculation.

A separate computational procedure has been designed to address the

need of correctly providing the interface between the inviscid results and the

BL solver. In this interface program, attention is focussed on correctly inter-

polating the inviscid results from the inviscid grid to the BL grid. The inter-

face procedure thus acts as a pre-processor for the BL solver, in which the

inviscid results are suitably processed. Depending on the inviscid method

used, the interface program can be modified. The BL solver, however, is

essentially invariant _nd dn_.._ nnt h_vA tn hA mnHifi_H H_nAnclinn nn th_ flnw

case being solved. The interface can also have provisions to output the cal-

culated BL edge conditions and graphically display them in order to check

for smoothness and accuracy.

The Inviscid Method

We make the assumption that the inviscid results are available on an

inviscid grid to the required degree of accuracy and resolution. Details of

the inviscid procedure are not dealt with here. Usually, it involves solving

the Euler equations, the full potential equations or a linearized version of the

potential equations. For subsonic flow cases, a higher-order panel method

is usually employed. For higher Mach numbers, solution of the Euler equa-

tions is necessary. To make the task of interpolation easier, certain restric-

tions have to be placed on the inviscid grid. They are given below:

(1) For a wing-type of geometry, the inviscid grid is assumed to be oriented

in the constant span and constant chord directions. A grid oriented in any

other way may produce large-errors when interpolating to a body-oriented

non-orthogonal BL grid. For a fuselage-type of body, the inviscid grid is

assumed to be derived from sections normal to the body axis (defined in the

positive x' direction).

(2) The inviscid grid distribution in the span-wise or circumferential direction

is assumed to coincide with that of the BL grid. In this way, we avoid inter-

polation in the span-wise or circumferential (i.e. q) direction. Higher resolu-

tion required in the streamwise (_) direction can be provided in the BL grid.
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The resolution in the _ direction in the BL calculation is pre-determined by

the inviscid grid.

The interface program must be provided with the following inputs from
an inviscid calculation:

(1) The inviscid grid in Cartesian coordinates (x' i, Y'i, z'i)

(2) The Cartesian components of velocity on the inviscid grid (u' i, v' i, w'i)

(3) The pressure or pressure coefficient values on the inviscid grid

It is not always necessary to specify the inviscid velocity components

since the inviscid flow field is completely determined with the specification of

the inviscid grid, the pressure, and the free stream conditions. However, the

velocity components are required to correctly locate the inviscid attachment

line on a wing.

The Interface Objectives

The interface procedure accomplishes the following 9.

(1) Generate the boundary layer grid starting from the attachment line or

stagnation point, with the required streamwise grid resolution

(2) Calculate the metric scale coefficients h 1, h2, g12 for this grid

(3) Calculate the BL grid-oriented edge velocities u e and ve on the BL grid.

The details of how the above are accomplished depends to a large

extent on the type of geometry being considered. Two types of geometries

are defined, with each one having a separate interface program. The first

one is a wing-type of geometry in which an inviscid attachment line can be

located and the body can be mapped to a plane surface. The second one is

a fuselage-type geometry which is assumed to have a stagnation point (or a

point of singularity such as a sharp cone) at its geometric extremity. The

geometry in this case can be mapped to a body of revolution.

The entire interface procedure can be skipped for bodies which can be

analytically defined and whose inviscid flow conditions can be expressed in

a closed form. The 2D flow test cases and some 3D flow test cases

presented later do not require an interface procedure since the BL edge

conditions can be exactly specified by analytical formula. The interface pro-

cedure is therefore required only for geometries and/or inviscid conditions

defined numerically rather than by equations.
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Interpolation Accuracy

The inviscid grid is typically a coarser grid than that is required for an

accurate BL calculation, especially in the streamwise direction. Since we

are assuming that the inviscid grid and BL grid are coincident in the T] direc-

tion, interpolation is required only in the streamwise direction. Two options

are provided in the interface procedure:

(1) Interpolate the Cartesian velocity components (u'i, v'i, w'i) from the invis-

cid grid to the BL grid and then compute the edge velocities

(2) Interpolate the pressure or pressure coefficient from the inviscid grid to

the BL grid and calculate uo and v o by solving the surface Euler equations.

In either case, the edge conditions going into the 3D BL solver must be

carefully monitored for smoothness and accuracy, since an accurate BL cal-

culation depends to a large extent on the quality of edge conditions

prescrlDea. IRe smoomness OT eoge CORQltlOR assumes grea[ Hnpu[[_Nuu

especially when the boundary layer calculation results are used for a stability

analysis. Non-physical oscillations entering into the BL results via edge con-

ditions can severely degrade the conclusions arrived at in a stability

analysis. Graphic visualization of the edge conditions generated by the

interface and checking for smoothness in P, and T1direction is recommended.

BL Grid and Metrics

For a wing-type geometry, the BL grid is generated starting from the

inviscid attachment line. The attachment line is in general a curved line

depending on the angle of attack, taper and twist of the wing. The inviscid

attachment line is first located approximately corresponding to the maximum

pressure line in the neighborhood of the wing leading edge. The Cartesian

velocity components are then interpolated to this line. The BL edge veloci-

ties uo in the streamwise direction and v e along the attachment line at this

location are then computed. The velocity conversion from Cartesian to BL

grid coordinates is done using the the following inversion:

A1
# X # i

Xx Y A

, A2

Y'x Yy A

A3

Zrx Zry

UG

"' [°'°1
= Iv"/

lw,ol
W e

h3
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where,

P

A1 = Yx'Z'y-Z" x.y'y

A 2 = X'y. Z' x-z'y. X' x

A 3 = X' x.y'y-xy.y'x

The ue values obtained on the attachment line should be zero by

definition. A relocation of this line can be done based on the non-zero value

of ue so as to make it exactly equal to zero. Usually this involves only very

small relocations of the attachment line since _)ue/_)s1 values are large near

the attachment line.

Once the attachment line is exactly determined, the BL grid can be

developed off it over the lower or upper surface. The grid distribution in the

streamwise direction is made such that the arc lengths As1 have a step dis-

tribution that can be selected as required. Once the BL grid is generated,

the metric coefficients h1, h 2 and g12 can be calculated based on eq.s 19-21.

The measurement of the BL coordinate x and y is arbitrary. They can be

measured along x' and y' or along x and y. The values of h1, h 2 and g12 will

accordingly be different.

For a fuselage type of body, the BL grid is generated starting from the

geometric extremity since we assume the stagnation point to be at this point.

However, one has to be careful about the placement of the i=2 point of the

BL grid. This has to be located downstream of the actual inviscid stagnation

point to avoid negative streamwise velocities in the numerical computation.

For moderate angles of attack < 6 o the i=2 point can be placed reasonably

close to the geometric extremity without producing any uncharacteristic

fluctuations near the stagnation point.

Spline Interpolation

Quantities on the inviscid grid can now be interpolated to the BL grid.

Interpolation is required only in the streamwise direction. The independent

variable for streamwise interpolation is the surface arc length sl, which can

be calculated for both grids starting from a convenient reference point such

as the leading edge or the stagnation point. Interpolation is done using

smoothed tension splines. The degree of smoothing and the amount of ten-

sion to use is dependent on the original input data and cannot be fixed _.
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priori. This has to be done on an interactive basis with graphic display of

the results; no automation of this selection is possible.

In the general case, this is a surface interpolation problem. If interpola-

tion is done by smoothing in the P, direction, followed by smoothing in the T1

direction, this can introduce non-smooth variation in the _ direction back

again. We have conveniently avoided this type of error-coupling by having

both the grids identically distributed in the 11direction.

This interpolation procedure is done for pressure. Optionally, the Carte-

sian velocity components can also be interpolated to the BL grid and edge

velocities can then be calculated using equation (130). Another option is to

calculate (Ue, Ve) from the interpolated pressure field by solving the surface

Euler equations; this method is more accurate in most cases.

Once (u e, ve) are obtained at all BL grid points, the edge quantities of

Pe and T e required in the 3D BL solver can be calculated. Calculation of T e

is based on the assumption that total enthalpy at BL edge is equal to the

free stream total enthalpy value (equation (16)). Calculation of Pe is based

on the free stream conditions and the assumption of an isentropic process

from free stream to BL edge. If there is a shock present, Pe can be calcu-

lated knowing the conditions downstream of the shock.

Solution of the Surface Euler (S.E.) Equations

The surface Euler equations from equations (27) and (28) are:

Ve oqUe 2I

h 1 onx h2 c3y + 024U2 + 025UeVe + 026Ve I= re'l (133)
,_ J

av l !
C v 21-51ax I+c uE +c3suevo+ 36oc r;.2 (134)

............... J

t

where, re, 1 and re,2 are the known pressure gradient terms on the RHS of

equations (27) and (28). The terms outlined in solid lines are zero for a

locally infinite swept wing (LINF) and the terms outlined in dashed lines are

zero for symmetry line flow (SYM BL). In the latter case, the entire y

momentum equation vanishes and the x momentum reduces to a Bernoulli-

type equation. Note that (x,y) and (_,T1) are interchangeable in the above

set since derivatives in the _ direction are zero.
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The above equations can be discretized using 3-point backward

differencing for a/ax quantities and the 5-point scheme for a/ay quantities.

Each i line is solved implicitly for (ue,ve) from a block tridiagonal system.

The discretization proceeds as given below:

(Ue+i_Ue)j[al(Ue+_Ue)j+{aUe} ]-{ (Ve+(_Ve)jhi h2 [bl(Ue+(3u e)j+b°(ue+(Su e)j-l+b2(ue+SUe)j +1

+ { bu e} ]+024(Ue-t-_Ue)j2"l-C25(Ue+_)Ue)j(Ve+_)Ve)_C26(Ve+_Ve)j 2 = r;, 1

(Ue+SUe)j [al(Ve+_Ve)j+{aVe} ]+ (Ve+SVe)j [bl(Ve+SVe)j+bo(ve+SVe)Fl+b2(ve+_Ve)j+ 1
hi h2

+{ bYe } ]+034(Ue+_Ue)j2+C35(Ue+_)Ue)j(Ve+_)Ve)j'FO36(Ve+_Ve)j 2 = re,2

The quantities {aue}, {bue}, {ave}, {bve} in the above refer to the explicit

part of the finite difference formula. For example, {bue} corresponds to

b3Ui_l,j+ b4Ui_l,j+l+bsUi_l,j+2 for v<0 and b3Ui_l,j+ b6Ui_l,j_l+b7Ui_l,j_2 for v>0.

Collecting coefficients corresponding to a block tridiagonal system as given

below, the expressions for the matrix elements can be derived. These are

given in Table 10.

e e . I all a12} I bll b121 I cll c121 • • •

La21 a22J Lb21 b22J LC21c22j

 oel
tav.j _l

aau.}
VeJj

f;u,1
lSv,J -I

m

= fr,.,]
lre,2Jj

Boundary-adjacent points which require a j+2E point outside the compu-

tation region are finite-differenced using a 2-point 'L' scheme.
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Table 10. Coefficients from the Surface Euler Equations

bo

all - 2h_ve'j

a12 = 0

1 [2al Ue,jbll = h"'_"

b12 = _2 lUe'J

b2

Cll = h-"_ve,j

bl+ {auo} + _h2Vej"+ 2024Ue, j + 025ve,j

+ boue,j_ 1 + b2Ue,j+ 1 + {bu o} + 025Ue, j + 2026ve.j

c12 = 0

ve,j
= ._ ue,._.j[alue,j + {aue } J--_'2 [b,u.,j + boue,j_, + b2uo,j+l + {bu e}]re,1 re,1 hi

2 2
-024Ue,j'-C25ue,jVe,j-C26ve,j

a21 = 0

bo

a22 = h----_.Ve,j

b21 = 2034ue'J + 035ve'J + _1 1ve'J + {ave}

al 112 ]= _ , + b lve,j bove,j-1 b2ve.j+l 035ue,j 2036ve,jb22 hl ue,j -_2 + + + {bve} + +

C21 = 0

b2

c22 = h-'_ve,j

* -- Ue'--_-J[alVe, j {ave}] - _re, 2 = re, 2 hi + Ve'j [blVe,j+bove,j_l+b2Ve,j+l+ {bYe} ]
h2

2 2
-034Ue,j-C35Ue,jVe,j-C36Ve,j
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The solution procedure for the surface Euler equations is similar to the

general 3D BL solution procedure. The initial solution is u e = ve = 0 at the

stagnation point for a fuselage-type body and ue = 0 for a wing-type body.

The attachment line velocity ve is obtained from equation (130) in the attach-

ment line relocation procedure. For an infinite swept wing, this value is a

constant equal to the sine of the sweep angle A.

The left boundary is calculated by solving the symmetry line equation or

the LINF equation set. The solution in the interior is obtained implicitly by

block tridiagonal inversion as shown in the sketch below. Iteration is

required for the nonlinear terms.

l
Known (j=l)
solution

Known (i-1) solution

X X X_X X

_ 0 -""""""__ 0 0 _,0------0

Solved implicitly - ,

J
s

s

X direction march

j=jm solved sxplicitly

by 'L' scheme

The j=jm point can be included in the implicit procedure by finite

differencing using an 'L' scheme. Alternatively, for a fuselage type body, it

can be obtained explicitly by solving the leeward symmetry line. The implicit

5 point scheme is dropped to an 'L' scheme at the boundary adjacent points

if the j+2e point is outside the computation region.
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10. RESULTS

A brief outline of the program structure will first be presented before

going into a discussion of the test cases and results. Further details are

given in the Appendix, which is intended as a program manual.

A general 3D BL solver cannot be designed to be used as a canned

program with no user interaction. Depending on the flow geometry, flow

conditions, inviscid results and outputs desired, some amount of user

interaction is necessary. For a given problem, some routines may have to

be modified or separate routines added. The user is thus assumed to pos-

sess a good amount of familiarity with the program structure, algorithms and

data flow. The material covered in the present report and the Appendix

should be adequate for this purpose.

Program structure

The program ensemble is arranged in a UNIX file tree structure.

various program divisions are tabulated below.

The

Program Group Sub-directory

Name

3D stagnation point solution stg_bl

Symmetry line BL solution sym_bl

Wing attachment line BL solution att_bl

Infinite swept wing BL solution infbl

Similarity-type BL flow solution sim_bl

3D BL solution 3d_bl

Interface program for wing int_wng

Interface program for fuselage int_fus

libMomentum and energy equation solver

routines, matrix inversion, spline and library

routines, 'include' blocks

A number of test and validation cases have been run. The following is a

list of these cases.
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Case 1.

Case 2.

Case 3.

Case 4.

Case 5.

Case 6.

Case 7.

Case 8.

Case 9.

3D stagnation point boundary layer solution

Flow past a flat plate (wall temperature or heat flux specified)

Flow past a cone at (x=0°, M==6.8with mass injection

Symmetry line flow on an ellipsoidat o_=6°

Flow past a NACA 0012 airfoil at o_=0°, M,_=0.5

Flow past a swept elliptical cylinder, _=5°, A=40°

Flow along attachment line on a swept cylinder

Flow past a cylinder normal to a flat plate

BL solution on a ellipsoid at angle of attack

Case 10. Flow past a constant sweep and zero taper wing

The sketch below indicates the location of each of the corresponding
programs in the program package.

"reBc ° 

int fus int wng 3d bl libI I J/l/ l I
case9 case10 _ / I \ _ case8 all cases

.-' I \ "-,,,,case 9

case 1 case 4 case 7 case 6 case 2

case 5 (case 10) case 3
(case 8) (case 8)
(case 9)
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The sub-directory called 'lib' contains the routines to solve the momen-

tum, energy and continuity equations and some other routines called by
these routines. All the test cases listed above use identical routines in 'lib'

with changes only in array dimensions. As seen in previous sections, the
equations corresponding to all the above cases can be expressed in the

...... _.............. v,,,x ,,,_ uv_,,,_,,_,,L_Ai, Bi, _'i _llU U i are different which

are defined externally in the calling program. Two-dimensional and axisym-

metric cases can also be run with jm set to 1 or 3.

The interface program is required only in cases 9 and 10, where the BL

grid and the inviscid results are not analytically defined. All the other cases

have an analytic treatment of the interface and is included as a routine in

the BL solution program itself. Graphic programs are essential to monitor

results at intermediate and final stages. These consist of line plots to look

at _ and 1] direction variations of various parameters and contour plots.

Since these programs are machine-dependent, they are not included in the

program package.

The results corresponding to the ten test cases will now be presented.

Detailed input information for each case is presented in the Appendix. The

Appendix also lists the various subroutines and their functions. The present

discussion is limited to the computational and physical aspects of the

results. The numerical and programming details are given in the Appendix.
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Case 1: 3D Stagnation Point Flow

This test case consists of flow at a general 3D stagnation point. The

solution is required on the wall normal at the inviscid stagnation point of the

body in 3D flow. Since there is no flow at the stagnation point, the solution

profiles consist of au/ax and av/_y values referenced to the corresponding

edge values. The solution is used as starting profiles for flow past 2D or 3D

blunt bodies.

The inputs for this case consist of:

hlge

(1) The quantity Cr, s = h2fe representing the ratio of velocity gradients in

two orthogonal directions. A value of Cr,s = 0 corresponds to 2D stagnation

point flow. For example, this would correspond to the starting profile

required for calculating the flow past an airfoil. A value of Cr,s = 1

corresponds to flow past an axisymmetric body at zero angle of attack. The

velocity gradient is independent of the direction in this case. Flow past an

ellipsoid of revolution at zero angle of attack is an example. Values of Cr,s

in the range 0 to 1 represent 3D stagnation point flow on a general body

where aVe/aS2=ge/h 2 is smaller than aue/asl=fe/hl. For flow past a fuselage

body at moderate angle of attack, Cr,s is very close to unity.

(2) The free-stream conditions of M=, p* and T_,. If the flow is supersonic,

conditions downstream of the shock are to be input.

(3) To obtain physical quantities such as heat transfer rate, boundary layer

thickness, it is necessary to specify also the inviscid velocity gradient,

aUe/aSl=fe/hl. However, for obtaining the solution in transformed variables,

this quantity is not required.

(4) If the wall boundary condition is non-adiabatic, the wall temperature or

wall heat flux can be specified. Transpiration at the wall w w can also be

specified. In both instances, fe/hl needs to be specified to transform the

physical heat flux or mass flux at the wall to the corresponding computa-

tional quantity.

The example presented here correspond to adiabatic wall conditions

only. Fig. 7 shows the solution profiles F and F' for 2D as well as 3D stag-

nation point flow. The first plot shows the profiles with 41 points in the boun-

dary layer (_e = 6) and 9 points. Exponential stretching with ke=l.1 was

used for the _ distribution. It can be noted that with just 9 points in the

boundary layer, a reasonably good solution has been obtained. The solution

compares exactly with other published results (Ref. 10, for example).
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An order of accuracy estimation was done for this simple case, by suc-

cessively halving A_. A number of runs were made with km=9,17,33 and 65

and with _o=6, ke=l.0 (no stretching). The absolute error relative to the

solution with km=129 on the profiles of F and F" at different _ locations was

computed. The corresponding variation with step size is plotted on a log-log

scale in Fig. 8. The slopes of error decrease on F as well as F' is approxi-

mately unity. Since the x scale is magnified four times compared to the y

scale, this indicates that the profiles are accurate to the fourth order. It can

also be seen that 5 digit accuracy is obtained for km in the range 30 to 40.

High accuracy with relatively few number of points is a feature of the present
fourth-order accurate method.
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Case 2: Flow Past Flat Plate

This is a 2D test case designed to validate the generation of similarity

profiles at a sharp leading edge and then calculate the 2D flow downstream

for a specified wall temperature or heat flux. The similarity profiles are gen-

erated by solving the equations set given in Table 7. The 2D flow down-

stream is calculated based on the symmetry line equations presented in

Table 4 with the crossflow velocity gradients set to zero.

The free-stream conditions are specified as Mo_=3.0, p_, =400 Ib/ft 2 and

T*=400°R. The reference length (corresponding to P,=I.0) is input as 5 ft.

Calculation was done at 21 streamwise points with A_=0.005. Initial runs at

lower Mach numbers representing nearly incompressible conditions gave a

Cf.x_ R-,_--_xvalue of 0.664 corresponding to the Blasius solution.

The program was then rJn w.th adiabatic wall conditions at .M_=3. The

adiabatic wall temperature was obtained as 1007.3°R which compares well

with the approximate relation Tad=T_[l+-_-_-_l M2q-o] =1011°R. The pro-

gram was then run with two types of wall conditions. The first run consisted

of an initial adiabatic wall condition for the first 11 points (for _<0.05) fol-

lowed by a linear decrease in the wall temperature from 1107.3°R to 820°R

for the next 10 points. This run thus corresponds to wall condition type 1

(iwall-1) with a specified temperature distribution from _=0.05 to P,=0.10.

The heat flux for this case is calculated. The second run consisted of speci-

fying the heat flux from {=0.05 to P,=0.1 as equal to the heat flux values

obtained from the previous run. The wall temperature values calculated by

the program were output and verified to be identical to the distribution used

in the previous run. This validates the 3 types of wall boundary conditions,

viz., adiabatic wall (iwall=0), wall temperature specified (iwall=l) and wall

heat flux specified (iwall=2). The boundary layer results for this case are

given in the Appendix.

Fig. 9 shows the solution profiles at 3 stations corresponding to _=0.05,

P,=0.075 and P,=0.10. The station P,=0.05 is the last point with adiabatic

boundary condition (i=11). The stations _,=0.075 and _=0.10 have wall tem-

perature specified as boundary condition. Profiles of F, F' , H and H' are

shown. H" at the wall is equal to zero at _,=0.05 which is the adiabatic con-

dition. The P,=0.075 and _=0.10 profiles have finite values of H' at the wall.

Fig. 10 shows profiles of T*, u* and the normal velocity w* in physical

dimension z*. The normal coordinate transformation used and the exponen-

tial stretching is responsible for clustering more points near the wall. The BL
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FLOW PAST FLAT PLATE (Wall heat flux specified)
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Fig. 9 Solution Profiles for Flow Past a Flat Plate
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FLOW PAST FLAT PLATE (Wall heaf flux specified)

SIM BL " Moo=3.O • NZ=41 • ke=l.02 " L*=5 ft.
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Fig. 10 Solution Profiles in Physical Plane for Flat Plate Flow
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thickness increases in the physical plane as can be seen by comparing the
3 profiles. At _=0.05, the value of o_T*/o_z* is zero at the wall since the wall is

specified as adiabatic at that point. At the other stations, _T*/_z*w is positive
as a result of the cold wall boundary condition T_ < Tad.

The boundary layer normal velocities are calculated from Eq.(111). For

the present case, Eq.(111 ) simplifies to:

w" U_UeeW U*UeF c3z*

PeSl a_--_-ref_l/ hlL* o_

o_z*

The boundary layer growth rate _ is calculated from the solution profiles.

The normal velocity profile compares well with the normal velocity given by

the Blasius solution (Ref. 10) when run under low Mach number conditions.

The non-dimensional velocity corresponding to Ref. 10 is obtained as
• I

"_, _ Reref_.

The skin friction corresponding to compressible laminar flow on a flat

plate can be approximately calculated as given in Ref. 10. In the present

case, the computed value of Cf,x_ R-_J-R_xis 0.6088 for the adiabatic case,

which compares well with the Cf,x_=-q-R-e-xvalue given graphically in Ref. 10,

page 237.

The variation of the boundary layer thickness, wall heat flux and skin

friction coefficient for this case are plotted with distance _ in Fig. 11. The

linear decrease in T_ is the input producing a corresponding change in the

wall heat flux. The first 11 points have zero heat flux condition. Note that

different scales are used for the different quantities.
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FLOW PAST FLAT PLATE (Wall heat flux specified)

SIM BL" Moo=3.O • NZ=41 • ke=l.lO " L*=5 ft.
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Fig. 11 Axial Variation of Results for Flat Plate Flow
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Case 3: Supersonic Flow Past a Cone

This test case involves flow past a cone at a free stream Mach number

of 7.4 at 0 ° angle of attack and with mass injection at the wall. The same

conditions have been used as a test case by Harris 11

The cone is assumed to be pointed with a semi vertex angle of 5 °. The
t

total pressure and temperature values ahead of the body are Pc = 4.14 x 106

Pa. and T O= 833°K. The inputs to the program are the conditions down-

stream of the oblique shock. From standard supersonic cone tables, the

conditions downstream of the shock at a free stream Mach number of 7.4

are obtained as M==6.833, p_=1260.12 Pa. and T*=82.53 °K. These are

used as reference conditions.

The cone has zero mass injection from x*=0.0 to x*=0.096 m. Down-

stream of this point, three types of wall conditions are input:

t _) pwWw = u, zero mass Injection

(2) pwWw =-0.090117 Pa.sec/m, wall suction

(3) pwWw = 0.090117 Pa.sec/m, wall blowing

The wall temperature is specified as Tw=316.65°K

The boundary layer on this body is calculated by first obtaining the ini-

tial solution profile at the pointed tip by solving the similarity equations

presented in Table 7. The solution downstream is obtained by marching in

the x direction and solving the symmetry boundary layer equations (Table 4)

with the crossflow velocity gradient set to zero. In the present case, x is

measured along the axis of the cone. Hence the metric h 1 will be equal to

secant of the half angle of the cone (from eq. 24). The metric h2 for this

axisymmetric case is the tangent of the half angle multiplied by (_x) (eq. 25)

and g12 is equal to zero. The inviscid velocity is equal to unity in accor-

dance with conical flow.

The boundary layer grid has a step size of A_=0.005 from _=0.0 to

_=0.09. From _=0.09 to _=0.13, A_ value is decreased to 0.001 where mass

injection introduces larger streamwise changes. For _ > 0.13, A_ reverts

back to 0.005. The grid in the wall normal direction has 41 points with

_0=8.0 and stretching corresponding to k0=1.02.

Fig. 12 presents the results obtained for the three cases of wall condi-

tion and plotted similar to the results given in Ref. 11 (the x dimension in

Ref. 11 is multiplied by a factor of 3.281). Fig. 12a shows the variation of

the skin friction along a ray of the cone as a function of the axial distance.
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FLOW PAST CONE (Wifh mass iniecfion )
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The mass injection/suction at _=0.096 produces the expected
decrease/increase in Cf,x_. The values and trend of the curve agree well
with the tabulated results in Ref. 11. For the wall blowing case, the boun-
dary layer separates at about _=0.11 as determined by the large increase in
iterations needed for convergence.

Fig. 12b shows the velocity profiles at the station _=0.1 of the cone
symmetry line with or without blowing/suction. The profile for the case ww<0
is fuller than the profile for the case w_>0 as expected. The profiles com-

pare very well with results from Ref. 11.

The solution of supersonic flow past a cone at 0° angle of attack is
basically similar to flow past a flat plate. The laminar supersonic cone rule
is applicable to this case (see Ref. 12). The results from this case can be

verified to follow the rule Of,cone = _ Of,flat plate for the same local Reynolds
number.
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Case 4: Symmetry Line Flow on an Ellipsoid at 0=6 °

This test case was selected to validate the equations and solution

scheme for symmetry line flow. The cross flow velocity is zero on the sym-

metry line; however, the cross-flow velocity gradient is non-zero and has a

strong effect on the boundary layer solution. The cross flow gradient

influence is brought into the system of equations by solving the equation

obtained by taking the T! derivative of the TI momentum equation along with

the _ momentum equation. The complete equations for symmetry line flow

are given in Table 4.

The symmetry line flow past an ellipsoid at a along the windward and

leeward lines is a good test case because the inviscid conditions and the

metrics can be specified in closed form, thereby eliminating extraneous

errors in the solution arising from geometry and the inviscid flow. The grid is

orthogonal everywhere on the ellipsoid (g12=0). The metrics h 1 and h2 are

functions only of _.

An ellipsoid of revolution with a fineness ratio ee (ratio of semi-minor to

semi-major axes) of 0.25 is considered here. The body is assumed to be 2

feet long. The flow is assumed at a Mach number of 0.05 at an angle of

attack of a=6 °. The inflow conditions correspond to p*= 2116 Ib/ft 2,

T*=S20OR.

The streamwise coordinate _ is measured along the axis of the body,

with _=0 at the leading extremity and _=1 at the aft end. The cross-flow

coordinate 1] is measured along the surface in a direction perpendicular to

the axis. At the windward line of symmetry, 1"1=0 and at the leeward line of

symmetry, 1]=1. Corresponding to the above definition of coordinates, the

metrics can be obtained analytically as,

h2 = _r e

where re is the non-dimensional radius at any location given as,

re = ee_

ar 1

where, onF_ - 2 re (2_-1)

g12 = 0
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The metrics h 1 and h2 are thus functions only of _. It can be seen that

h 1 --> 0o as P,--> 0 or P, --> 1. The extremities of the body are thus geometric

singularities in the present coordinate system.

The inviscid velocities at any location (P,,TI)can be obtained as follows:

I r _)r "1

ue- hi lql-q2"_" C°s(_q) I

ve = q2Sin(_'rl)

2Coso_ 2Sino_

ql = 2_q3 ; q2- 2_q4

2e 2 e 2 e s

q3 = e_- (et-es) ; q4 = e-"_ (_ 2-et)
v

es= l"_rl-Ee-e2; e,=V21n]l_-_s

ohVe

Fig. 13 shows the axial variation of ue, -_-, hi and h2 along the axis

on the windward line for the first 10% length of the body (till _=0.1). The

stagnation point is located on the q=0 line at P_=0.0005 approximately.

Hence we place the i=2 grid point downstream of this point at _=0.001. The

cross flow velocity gradient is a constant for all P,.

The initial profiles are generated by solving the 3D stagnation point

equations with Or,s=1. The symmetry lines along the windward and leeward

rays are solved by a _ direction march. The edge coefficient _,2 is an impor-

tant quantity since this determines the smoothness of the solution near the

starting plane. The value of _,2 is equal to -1 in the STG BL equations. In

the SYM BL equations the value of A,2 at i=2 should be close to -1 for a

smooth continuation of the solution starting from the initial stagnation point

profile. Numerical evaluation of _,2 from the equation,

_2 = _ Sl a _/pej.l, eSlU e

hlh2_/Pe_eSlUe _

by first order backward differencing at i=2 gives a value of _,2 close to -1.5,

which will give a non-smooth solution in the _ direction. This is because _'2
0

is in _- form as written above as _ --->0 and first order differencing does not

produce the correct value. However, if we rewrite the above equation as,
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0.007 0.442 0.611 1.785 0.066 0.764
0.008 0.473 0.611 1.705 0.070 0.788
0.009 0.502 0.611 1.640 0.074 0.810
0.010 0.527 0.611 1.586 0.078 0.829
0.011 0.550 0.611 1.541 0,082 0.646
0.012 0.571 0.611 1.502 0.086 0.861
0.013 0.590 0.611 1.468 0.089 0.875
0.014 0,608 0.611 1.439 0.092 0.887
0.015 0.624 0.611 1.412 0.096 0.899
0.016 0.639 0.611 1.389 0.099 0.909
0.017 0.653 0.611 1.368 0.102 0.919
0.018 0.666 0.611 1.350 0.104 0.928
0.019 0.679 0.611 1.333 0.107 0.936
0.020 0.690 0.611 1.317 0.110 0.943
0,030 0.776 0.611 1.214 0.134 0.996

0.040 0.829 0.611 1.159 0.154 1.026
0.050 0,867 0.611 1.125 0.171 1.045
0.060 0.894 0.611 1.102 0.187 1.058
0.070 0.916 0.611 1.085 0.200 1.067
0.080 0.933 0.611 1.072 0.213 1.073
0.090 0.947 0.611 1.062 0.225 1.078

0.100 0.959 0.611 1.054 0.236 1.082

Fig.13 Variation of Metrics and Inviscid Conditions on Symmetry Line

Ellipsoid at 6° angle of attack
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1
A2 = - "_" + -- where, :X = h2_FPep-eUex

then the numerical evaluation gives the correct behavior of '_2 as _ _ O.

Fig. 14 shows the skin friction and boundary layer thickness (99%

value) variation along the windward and leeward lines until separation near

the rear stagnation point. These values agree well with results given by

Wang 13 (note that for comparisons with the present results, Wang's results

must be multiplied by 2q-2 due to different definitions of Cf.__ and _).

Fig. 15 shows the streamwise velocity profiles and the crossflow velo-

city gradient profiles at different axial stations on the windward and leeward

symmetry lines. Note that the crossflow velocity gradient on the leeward line

has a cross-over profile at _=0.6 and _=0.81.

Fig. 16 shows the variation of t* and Cf_x with _ for the first 1% of the

body on the windward symmetry line. The _ distribution used for this run is:

_1=0.0, _2=0.001, _3=0.0011, _4=0.0012 ... _22=0.003. It can be seen from

Fig. 16(a) that the variation of t* is not smooth near the stagnation point.

This is due to the fact that we have assumed the stagnation point to be at

_=0, which is not physically correct and feeds in wrong edge values of s 1,

DUe
and aX The stagnation point is approximately at _=0.0005 and

at at
correspondingly, we can have a grid originating from this point with

_1=0.0005, _2=0.001, _3=0.0011, _4=0.0012 etc. Fig. 16b shows the boun-

dary layer thickness and skin friction variation for this new grid. It can be

seen that the variation is smooth in the nieghborhood of the stagnation

point.

Fig. 17 shows the corresponding improvement in the solution near the

nose region on the leeward line. In this case, _1 is taken to be equal to

-0.0005 since the stagnation point is on the windward line. The edge values

ahl oqh2 O_Ue r3"v
of

(3x ' ax ' oqx ' and _x at i=2 are evaluated using forward differences in

this case to avoid differencing across the metric singularity at _=0.
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Case 5: 2D Subsonic Flow Past an Airfoil

This test case is that of two-dimensional flow past an airfoil at zero

angle of attack and comparison with 2D Navier-Stokes results at two chord

Reynolds numbers. The airfoil has NACA 0012 cross section and the free

stream conditions correspond to Moo =0.5, p*=2116 Ib/ft 2 and T_=520°R.

The free stream Reynolds numbers based on chord length are Reoo=5,000

and Reoo=l million. The reference lengths correesponding to these two Rey-

nolds numbers are L*=l.4133x10 -3 and L*=0.28266 ft. respectively.

The inviscid results in the form of pressure coefficient values on the air-

foil surface are obtained from a 2D navier-Stokes calculation as presented in

Ref. 14. The N-S calculation is obtained on a 161x65 grid. The edge velo-

city ue is calculated from the pressure distribution assuming isentropic flow.

The boundary layer calculation is done by first obtaining the 2D stagna-

tion point solution at i=1 on the leading edge. The BL grid distribution over

the airfoil surface is the same as the grid used for the Navier-Stokes run;

consequently, no interpolation is involved in this case. The streamwise

coordinate _ is defined and measured along the airfoil surface, so that h 1 is

equal to unity. The boundary layer downstream of the stagnation point is

calculated by solving the symmetry line equations with the cross flow gra-

dient terms suppressed.

Fig. 18 shows the variation of the skin friction coefficient and the boun-

dary layer thickness on the airfoil with surface arc length for Reynolds

number of 5,000. Shown also are the skin friction values computed from the

Navier Stokes run, which compare well with the present results.

Fig. 19 shows the results for Reynolds number of 1 million. The

Navier-Stokes result shows an increase in skin friction near _=0.45, where

the turbulence model was turned on. The boundary layer calculation does

not include turbulence modelling and predicts laminar separation at this

point.

Further details about this test case can be found in the Appendix.
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Case 6: Flow Past an Infinite Swept Elliptical Wing

This test case has been selected to validate the solution of the infinite

swept wing equations presented in Table 6. The elliptical wing considered

here has a sweep A of 40 ° and a fineness ratio of 0.125 for the elliptical

cross section normal to the leading edge. Flow is assumed to be at an

angle of attack _ of 5° and low Mach number (Moo=0.1, p_*=2116 Ib/ft 2 and

T_'=520°R). The reference length is the chord length normal to the leading

edge (L*=I ft). The geometry corresponds to that used in a study by Mon-

noyer 15.

The boundary layer coordinate used for this study is an orthogonal one.

A non-orthogonal grid similar to that for a wing can also be used; however,

in the present case, the orthogonal grid yields simpler expressions for the

inviscid velocities. The F=direction is assumed to be in a direction normal to

the wing leading edge over the wing surface and the T1 direction parallel to

the leading edge. Both F_and TI are measured in their respective directions,

so that h 1 = h 2 = 1 and g12=0 due to orthogonality. Note that F=is zero at

the stagnation point, not the leading edge.

The inviscid conditions can be calculated by potential theory. Ref. 16,

for example, gives a closed form expression for the complex potential for

this flow, from which the complex velocity can be obtained by differentiation.

The absolute of the complex velocity Ue,2D past the normal cross section of

the wing can then be calculated.

By classical sweep theory, the incompressible flow past the swept wing

in the orthogonal coordinate system is given by, ue = Ue,2D COS(A) and

v e = Sin(A). Fig. 20 shows the inviscid edge velocity Ue,2D for an ellipse of

fineness ratio 0.125 at o_=5°. The plots show the cross section of the ellipse

and the Ue,2D distribution near the leading edge, at different magnifications.

Also shown is the variation of Ue,2D with _.

The pressure coefficient Cp on the body for incompressible flow is given

by 1-(Ue,2D CosA) 2- Sin2A. The Cp distribution calculated for this body is

significantly different from Ref. 15 (see Fig. 21). Since the input conditions

do not agree, the results from this case and Ref. 15 cannot be compared.

The boundary layer solution for this type of flow starts with the solution

at the attachment line which is also assumed to be infinitely swept. The

Eq.s 87-90 are applicable in this case. From this starting solution, the flow

over the elliptical wing is calculated by solving the infinite swept wing equa-

tions of Table 6. Fig. 22 shows the skin friction and displacement thickness
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values (multiplied by the square root of the free stream Reynolds number)

on the body for the first 10% part of the wing. The figure also shows the

streamwise and crossflow velocity profiles at several stations.
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Case 7: Supersonic Attachment Line Flow on Swept Cylinder

This configuration corresponds to a cylinder of 1 inch radius and 60

inches span with a sweep of 60 °. The flow is supersonic at Moo=3.5,

p_=188.78 psf and T*=172.75 °R and is at zero angle of attack. Fig. 23 is a

sketch of the geometry with definition of the coordinate system employed.

The y=0 plane is assumed to correspond to a symmetry plane. Boundary

layer solution of the attachment line at the leading edge is the objective.

The inviscid flow past this geometry has a small subsonic region around

the symmetry plane leading edge. This region extends between one and

two radius lengths from the symmetry plane. Outside this region, the flow is

fully supersonic, with an oblique shock in front of the leading edge. The

present calculation is done only in this supersonic region. The subsonic

region has sharp gradients and the inviscid grid used is not able to resolve

fully the flow in this region.

The inviscid flow past this body has been calculated by a finite volume

Runge-Kutta integration solver for the Euler equations (Ref. 17). Fig. 24a

and Fig. 24b show the contours of the pressure coefficient and the absolute

velocity plotted in (y,e) plane for one half of the elliptical cross section from

e=O ° to 0=90 °. The large gradients occurring near the symmetry plane can

be seen. The inviscid results required for the attachment line flow are the

velocity values along the attachment line and the streamwise gradient of ue.

The variation of these quantities with span distance is shown in Fig. 25a. It

can be seen that the quantities tend to constant values at about 20 radius

lengths away from the symmetry plane.

The coordinate system used for this case is a non-orthogonal one. The

y coordinate is measured in a direction perpendicular to the chord. The x

coordinate is measured along the surface of the elliptical cross section in the

stream direction. The reference length L* for non-dimensionalization is the

radius of the cylinder. The value of x is zero at the attachment line and

equal to =/2 at e=9o °, where e is the angle from the leading edge on the

projected circular cross section, as shown in Fig. 23. The metric coefficients

can be obtained from the coordinate system definition as,

hi = 2_/sinZ_e + c°s2ecosA

1
h2 =_

cos&

g12 = 2 sinesinA
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At 0=0 on the attachment line, the grid becomes orthogonal with h1==/2,
1

h2- cosA ' g12=0"

The BL calculation is started from y=1.8 approximately and marched till

about y=20. At the first station j=l, the infinite swept attachment line equa-

tions are solved to initialize the calculation. Stations downstream in the y

direction are solved from the general attachment line equations. The

derivatives are calculated using a 2 point backward scheme. Fig. 25b

shows the variation of boundary layer thickness and skin friction along the

attachment line. For y>20, the results tend to the infinite swept case. The

starting profile assumption of infinite swept attachment line, though a severe

one, does not seem have affected the results considerably. The same pro-

cedure is also applicable for calculating attachment line flow on blunt leading

edge wings.
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Case 8: Flow Past Cylindrical Post on Flat Plate

This is the first case involving solution of the full 3D BL equations. The

flow geometry consists of a cylindrical obstruction mounted normal to a flat

plate in subsonic flow and is a standard test case for 3D boundary layer

code validation. Calculations made by Fillo and Burbank le and Cebeci 19 are

referred to here for comparison of results.

The radius of the cylinder (0.061 m) is used as the reference length.

The flat plate extends to a length of 7.49 radii in front of the cylinder center.

The free-stream conditions are specified as p*=l.0133x10 s Pa,

T=*=288.15°K and M,=0.08963, which corresponds to a free stream velocity

of 30.5 m/s. Fig. 26 shows a sketch of the configuration.

The coordinate system for the boundary layer calculation is an orthogo-

nal one aligned in the streamwise and crossflow directions. The metric

coefficients h 1 and h2 are equal to unity and g12 is equal to zero. The 11=0

line corresponds to a line of symmetry. The computation region is restricted

to _ [0,2.8] and 11[0,1] since only laminar attached flow is of interest here. A

step size of A_=ATI=0.1 is used giving a 29xll boundary layer grid.

The inviscid flow is given by analytical formula as,

ue=l+ " _o =7.254
'

v, = 2

Note that v e is zero at 11=0 and is positive in the computation region.

To start the 3D BL computation, an initial plane of data is to be pro-

vided at _=0, the leading edge of the flat plate, which is a flow singularity.

Similarity solution is therefore required at this location. This is obtained as

explained in Case 2 by solving the similarity equations. For the Ti direction

sweep, it is also required to specify the solution on the side boundary at

_1=0. The flow here is of the symmetry line type. The solution is obtained

by a procedure as explained in Case 4. The definition of G is different

depending on the equations solved. It is equal to zero for the initial profile,

since it is assumed that the upstream influence of the cylinder at that loca-

tion is negligible. For the symmetry line solution G is defined as _)v/c3yand

in the 3D region G is defined as equal to ve. The different definitions are to

be properly accounted for when calculating _ and 11derivatives of G near the

boundary.
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Fig.26 Flow Configuration for Cylinder on Flat Plate
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The 3D solution is obtained by marching in _ direction and for each

location, marching in the positive 11 direction. Two 1"1differencing schemes

are used here; the first one is the 'Z' scheme as given by Eq. 127; the

second scheme is the 'L' scheme as given by Eq. 129. The edge

coefficients are evaluated as given in Table 2. Certain simplifications are

possible since metric quantities are constant. Since the crossflow velocity is

always positive in the computation region, the calculations are stable for any

step size.

Fig. 27 shows a comparison of the F' values at the wall at three span

locations. Data from Ref. 18 as well as the 'Z' scheme and the 'L' scheme

results are shown. In all the three cases, good agreement can be seen.

Fig. 28 shows contour plots of F'w and G'w in the computation region.

The variation is smooth at both initial and side boundaries. Table 11 is a

table of the values of F'w and G'w at _=0.0., 11=0.5 and at _=1.0, for several

stations and can be directly compared with similar tables in Ref. 18 and

Ref. 19. Agreement is obtained to four digit accuracy in all cases.

Fig. 29 contains plots of the boundary layer parameters tx--0.99, ex, Cf_x,_

and Cf_y,= plotted in the T1direction for four _ stations. The variation near
the boundaries is smooth and continuous.

Details of the program and routines used are presented in the Appen-

dix.
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f' (j=6) g' (j=6)

0.00000

0.00082

0.00184

0.00320

0.00508

0.00778

0.01175

0.01778

y=l .0

f' (j=ll

0.33207

0.32898

0.32505

0.32000

0.31339

0.30449

0.29231

0.27523

0.33207

0.32926

0.32574

0.32130

0.31562

0.30823

0.29844

0.28536

g' (j=ll)

0.00000

0.00156

0.00350

0.00605

0.00953

0.01445

0.02157

0.03214

Table 11. Numerical Values of Fw and G'w for Cylinder on Flat Plate Flow
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Case 9: 3D Flow Past Ellipsoid at Angle of Attack

Overview

This test case involves a fuselage-type body in subsonic flow at an

angle of attack. The incompressible flow can be expressed in an analytic

form. The boundary layer edge conditions can thus be obtained exactly.

In order to simulate the conditions of flow past a fuselage, the BL solu-

tion was also obtained by defining the body in discrete coordinates. The

body surface is made up of discrete panels and the inviscid flow is calcu-

lated by the Hess potential panel code 2°. The pressure coefficient values

obtained from this code are at the center of the panels. A more densely

packed BL surface grid is then generated. The pressure field is interpolated
to this .arid. The edae velocities corresDondino to the BL orid are then c.al-

r.lll_t_d hy _n inf_rf_r,'_ nr_nr_m in iAnh;_h the _"_o"" I:::,,l_r ,_,,,_÷;_n_•.. p.,v_ ................ .-,_-,,-.-,.._. ,-u,_, _u_L,u,_o are

solved. The results at this stage can be compared with the exact solution.

The boundary layer solution for the first one quarter of the body

(_ _<0.25) is then obtained from the exact edge conditions as well as the

numerically obtained edge conditions.

Flow Conditions

An ellipsoid of revolution with a fineness ratio ee (ratio of semi-minor to

semi-major axes) of 0.25 is considered here. The body is assumed to be 2

feet long. The flow is assumed at a Mach number of 0.05 at an angle of

attack of cz=3°. The inflow conditions correspond to p*= 2116 Ib/ft 2,

T*=520°R. This corresponds to a free-stream Reynolds number of 3.54x105

per foot or a reference Reynolds number of 4.765x10 s per foot.

Exact Forms for Metrics and Inviscid Flow

The exact definition of the metrics, and the inviscid

potential theory have been discussed under Case 4.

Numerical Evaluation of Metrics and Inviscid Flow

flow based on

For the numerical calculation of the inviscid flow, the body is

represented by means of 1998 panels (54 streamwise and 37 circumferen-

tial). The panels are made smaller near the leading region to obtain ade-

quate resolution in the streamwise direction. The panel size in the circum-

ferential direction is kept constant (corresponding to a 5 ° angular distribu-

tion). The Hess code results are obtained at the center of these panels on a
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53x36 grid. The inviscid results at each panel centroid consist of the Carte-

sian coordinates, the three Cartesian velocity components and the pressure

coefficient.

The interface program generates the BL edge conditions from the invis-

cid results. The streamwise resolution provided by the inviscid code is

inadequate for BL solution. A BL grid is generated with 77 points in the

interval _ [0.0,0.25] and 38 points in the circumferential direction. The cir-

cumferential distribution is the same as the inviscid grid with two points

added corresponding to the windward and leeward lines. The metrics h 1, h2

and g12 are then calculated numerically as given by eqs. 19-20.

The pressure coefficient is interpolated from the inviscid grid to the BL

grid using tension spline fit. Since circumferential locations coincide interpo-

lation needs to be done only in the _ direction. Smoothing can be intro-

duced at this stage, if necessary. However, the extent of smoothing to be

used depends on the quality of the inviscid results. In the present case,

smoothing was not required since the inviscid results have adequate

smoothness.

The surface Euler equations are then solved as described previously.

A three-point backward formula is used for the streamwise gradients and the

five-point implicit formula of Ref. 8 for the crossflow gradients. The resulting

velocities uo and v e are compared with the exact values to verify accuracy of

the numerical results.

Fig. 30 shows streamwise plots of the edge velocity ue and the inviscid

pressure distribution used for this calculation. The plots are selectively

shown at six locations of Tl=0.014, 0.208, 0.402, 0.596, 0.790, 0.984

corresponding to j values of 2, 9, 16, 23, 30, 37. The results are shown in

the range _ [0.0,0.05] where the variation is more pronounced. Shown in

these plots are the Cp values from the inviscid code and the interpolated

pressure distribution. There are 13 inviscid points in this range, whereas the

BL grid has 38 points. The plots show that interpolation of pressure is accu-

rate. The plots also show a comparison of the calculated uo values with the

exact uo values. The surface Euler solution is initialized at i=2 (_=0.000127)

with the exact values of u e and vo. The windward and leeward are first

solved from the x momentum equation of the surface Euler set with ve set to

zero. The interior region is then solved using the five-point scheme. Subse-

quent runs using the 'L' scheme and the 'Z' scheme also gave comparable

results, although the crossflow velocities from the 'Z' scheme showed a

slight departure from the exact results at larger values of _.
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Fig. 31 shows a comparison of the exact values of ue and ve with the
surface Euler solution in the 11direction. The plots are selectively shown at
_=0.002, 0.005, 0.037, 0.091, 0.151, 0.211 corresponding to i locations of
12, 24, 36, 48, 60, 72. The plots of vo are scaled up by a factor of 4. The

agreement between the exact values and the numerical solution is thus
good in both directions.

Boundary Layer Results from Exact Inviscid Input

As discussed under Case 4, the solution is first obtained on the wind-

ward symmetry line. At o_=3°, the stagnation point is located at x=0.000125.

The i=2 point is hence located just downstream of this point. The windward

solution at i=2 is obtained by using forward differences forline symmetry

_)ue

and -_-. Similarly the streamwise gradients of the metrics at this point are

calculated using forward differences, so as reduce the error in the starting

region due to the imprecise location of the stagnation point (as pointed out

in Case 4).

The solution in the 3D flow region is obtained by a sweep in the

direction using the 'Z' scheme. Since the crossflow is positive everywhere,

an 'L' scheme can also be used. Fig.s 32 and 33 are plots of the variation

of Cf _ and tx _ in the _ and 11 directions. The variation in both

directions is found to be smooth and continuous and agrees well with results

given by Wang 13

Fig. 34 shows plots of the velocity profiles and their first and second

derivative in the normal direction at a particular _ and q location. It can be

seen that the solution is smooth to the second derivative level, even though

there are only 15 points within the boundary layer. Smoothness of the

higher derivatives of the solution is a requirement for stability calculations

and this can be efficiently achieved by the present method.

Boundary Layer Results from Numeric Inviscid Input

The boundary layer calculation here is identical to the exact calculation

except that the input metrics and inviscid edge data are numerically

obtained. The numerical errors resulting from the geometry and inviscid

data can thus be estimated.

Fig. 35 shows a comparison of the skin friction coefficient and boundary

layer thickness resulting from exact as well as numeric treatment of edge
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data and metrics. There is a good agreement between the two sets of

results in both _ and 11directions. This study shows that the present numer-

ical interface procedure is accurate and similar results can be expected

when obtaining BL solutions on fuselage bodies defined in discrete coordi-

nates.
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Case 10: Flow Past Swept Wing at Angle of Attack

Geometry and Flow Conditions

A swept wing with zero taper and a straight leading edge is considered

here. The wing has NACA 0012 cross section in the streamwise direction

and is swept back by 20 °. The chord length is taken to be equal to 1 ft. and

the span distance (normal to the chord line) is 1.5 ft. Flow is at an angle of

attack of 2 ° and a Mach number of 0.5. The free-stream conditions of p*

and T* are same as given for Case 9.

The present calculation is done for the upper surface only and assumes

laminar flow until separation. However, the calculation does not take any

advantage of the analytical nature of the wing section or planform and can

be. ApE _cl ?n ._nlvA thA flnw nv_r fh_ ,,pp,-r t_r I_lA,"r e,,_',,_ _f 3 ,-_r_r,'_l

• ,,,,u ,v,u, tal.,_,, sweep or cranked leading edge. 0Ne method used is gen-

eral and can be used for transonic or supersonic flow. The only change

required would be in the calculation of the edge density values which are

calculated here assuming isentropic flow.

Inviscid Flow

The inviscid flow past the wing is calculated using the Hess panel

code 2°. These results were also checked against Euler and Navier-Stokes

calculations and found to be accurate for the present inflow conditions.

The Hess panel code version used here had a limitation of a maximum

of 2,000 panels. Assuming 21 panels distributed in the spanwise direction,

the streamwise wrap-around direction is limited to just 95 points. The

panels are distributed in the wrap-around direction such that more points are

clustered on the upper surface especially in the attachment line region. The

panel size near the stagnation region is about 0.1% of the chord length.

Elsewhere, the panel size is 2% of the chord. Fig. 36(a) shows the distribu-

tion of As, the panel surface arc length as a function of s, the arc length on

the entire wing. A step-wise distribution has been used.

The inviscid results are obtained at the panel centroids. The

corresponding grid has 89 points in the wrap-around direction and 20 points

in the span direction. The results from the Hess code are obtained in the

form of Cartesian velocity components and the pressure coefficient at each

inviscid grid point, o
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Coordinates and Metrics

The boundary layer coordinate _ is defined to be zero at the attachment

line of the wing. The _ coordinate line runs in the chord direction on the

wing surface and is measured along the surface of the wing. The value of

is defined as the surface arc length starting from the attachment line divided

by a normalizing chordwise length such as the the chord length at a particu-

lar span location, or the total arc length from the attachment line to the wing

trailing edge. This normalization is done so that the coordinate lines in the _1

direction will be approximately along constant chord ratio points.

The metric h 1 is thus a constant at a given span section and is equal to

the normalizing length. In the present case, the local chord length is used

as the normalizing length, so that h 1 is equal to unity everywhere. For a

LC;;a,IJ¢I_U VVlll_ II 1 VVIII VC3.1y III Llll:7 -,,,,_.JC;I.II UII_bLIUII CIL_._ CIL lUlIbLIUII UI LII¢ _.JICILIIIUIIII

shape.

The coordinate _1 is measured along the Cartesian coordinate y'. The

coordinate h2 will then be equal to inverse of the cosine of the sweep angle,

if the attachment line is straight. Otherwise, h2 will depend in the wing cur-

vature and taper in the span direction.

Interpolation of Pressure

Fig. 36 (b) shows the variation of Cp obtained from the inviscid code as

a function of the surface length s at a span station near the mid-section of

the wing. It can be observed that more number of points are clustered on

the upper surface. The attachment line region is where Cp has a peak and

enough number of points are clustered in this region. The attachment line

and the maximum Cp line need not be coincident (see Ref. 2), but they are

very close to each other. Fig. 36(b) shows that the Cp distribution is not

entirely smooth. Fluctuations can be seen in the regions where the panel

size is changed. The fluctuations are especially remarkable when we look

at the pressure gradients as in Fig. 36(c). Therefore, when the pressure is

interpolated to a BL grid, some kind of smoothing has to be employed to

prevent non-physical fluctuations entering into the BL calculations.

The wing interface program is designed to process the inviscid results

and interpolate them smoothly to a BL grid. Fig. 37(a) shows the surface

length distribution corresponding to the BL grid on the upper surface of the

wing. Fig. 37(b) shows the smooth interpolated pressure at a mid-span

location. Tension spline interpolation with smoothing has been used. The

smoothing parameter is set such that the standard deviation on the error in
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the input Cp distribution is assumed to be 0.01 near the attachment line

(_ < 0.01) and equal to 0.05 elsewhere. These smoothing parameter values

are dependent on the quality of the inviscid results and will vary depending

on the case. The resulting pressure gradients are smoothly varying as can

be seen from Fig. 37(c). In comparison, the pressure gradients resulting

from an interpolation without smoothing (shown as a dashed line) has unac-

ceptable levels of fluctuation.

Attachment Line Relocation

Since the inviscid grid may in general be coarse and not aligned with

the wing attachment line, the interface procedure includes a routine to accu-

rately locate the attachment line. The criterion for relocating the line is that

the streamwise velocity at any point on the attachment line should be equal

iu L_ru. it1 fact, _he veiocity vector on the attachment iine shouid be exac_iy

tangential to it.

To ensure this condition, an initial attachment line is first located on the

wing surface as that corresponding to the maximum Cp line. However, since

a general attachment line is curved, the velocity on this line may not be

tangential to the grid line. The attachment line is then relocated as a func-

tion of the velocity error. The relocation calculation is repeated in an itera-

tive fashion until convergence is obtained.

The relocation procedure involves the following steps:

Assume initially that the attachment line is located at the line of max-

imum pressure

Generate a temporary BL grid off this line and interpolate the velocity

components to the BL grid points

Compute the streamwise surface velocity ue by transformation

Move the attachment line as a function of the streamwise velocity; the

relocation extent 5s is = ue/ku, where ku is an estimated value of

(_ue/_)s) at the attachment line.

- Repeat the steps above with the new attachment line and iterate until

ue < _u on the attachment line.

The interpolation involved in the above steps is based on the surface

length as the independent variable. The wing cross section coordinates

required for calculation of the metrics and velocity transformation are also

obtained by spline interpolation. A reference section geometry at each span

location is used in the interpolation procedure.
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Fig. 38 shows a magnified picture of the shifting of the attachment line
as a result of the relocation. The initial attachment line is located along
inviscid grid points and shows up as a horizontal line. The ue on this line is
non-zero. Several iterations later, the attachment line is relocated as a

curved line as ue on this line converges to zero within a specified tolerance
level.

Surface Euler Solution

A BL grid with the required clustering of points on the wing surface is

now generated originating from the true attachment line. The metrics are

then calculated and the pressure is accurately and smoothly interpolated as

explained previously. The surface Euler solution is then obtained using the

5-point implicit scheme. The solution procedure is similar to the one dis-

cussed under case 9. The only difference is that the left boundary is an

infinite swept wing type instead of plane of symmetry. Fig. 39(a) shows the

variation of the obtained solution ue and ve at two span locations near the

root and tip of the wing. In order to demonstrate the error that can occur by

interpolation of velocities, Fig. 39(b) shows a magnified plot of the interpo-

lated velocities near the attachment line region. The variation is obviously

not smooth and a BL calculation cannot be performed with this type of edge

conditions. The surface Euler solution, on the contrary, is smooth and accu-

rate. The output from the interface procedure consists of the velocities ue

and ve, the metrics h 1, h2 and g12 and the grid distribution x and y.

Boundary Layer Solution

The boundary solution starts with the solution of the general attachment

line equations at _=0. The solution is analogous to case #7 except that in

this case, the flow is subsonic and none of the metric terms or their gra-

dients are assumed to be zero. The solution is restricted to the region

0.1875<y<1.2375. The flow outside this region close to the wing root and

wing tip are excluded from the calculation. The attachment line solution

itself starts with the solution at y=0.1875, which is assumed to be locally

infinite swept. The inputs to the attachment line solution consist of the

metrics, the velocity ve and the stream-wise velocity gradient fe- The

required results to start the 3D BL computation are the profiles of v/ve and

fife. The span-wise variation of the input quantities and the the results in the

form of (_y-0.99 and Cf_y,_ are plotted in Fig. 40. The profiles at different

locations on the attachment line are given in Fig. 41. Fig. 40 and Fig. 41

show that the attachment line boundary layer corresponds to that of an
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accelerating flow.

The side boundary solution is obtained by solving the LISW equations
at the j=l boundary corresponding to y=0.1875. Fig. 42 shows the results of
Cf_x,oo, Cf_y,_o and (_x-0.99 along the side boundary. The calculation is ter-

minated at _=0.47 approximately, where the boundary layer separates.

Cf_x,., reaches a peak value of 0.007 at about _=0.017 and Cf_y,oo has a

negative peak at _=0.026. The boundary layer thickness increases steadily

except near the separation region where the growth is exponential. Fig. 43

shows the velocity profiles in the _ and 11direction at 9 stations along the left

boundary. The profiles are plotted in actual physical units in order to show

the growth of the boundary layer. It can be seen that the crossflow velocity

profiles show an inflexion as the edge velocity vector turns inward earlier

than the velocity vector near the wall. This inflexion in the nrnfilA i._ ._p._.ntn
i ....

n_.r._i._t till _hnl it F-_I_ .q _n_ i_ r_f int,',r,-e÷ in th_ e÷, ,H,, _f _r_eefl_,., e._,_._f;._._

With the initial and side boundary planes of solution available, the 3D

equations are now solved. Crossflow gradients are treated using either an

'L' scheme or a 'Z' scheme. The results in either case are almost identical

in the present case. Fig. 44 shows contour plots of the BL results on the

wing surface (approximated by the _, y' plane). It can be seen that the con-

tours are predominantly parallel and in the span direction, showing that there

is very little departure from the infinite swept wing flow. As separation is

approached one can notice an increase in the three-dimensionality of the
flow.
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11. CONCLUDING REMARKS

A fourth-order accurate method to solve the 3D boundary layer equa-

tions has been presented. The method has been applied to a number of 2D

and 3D cases over a range of speeds and validated against standard known

results.

The 3D boundary layer equations in curvilinear coordinates are first

non-dimensionalized with reference quantities. As a result, the body dimen-

sions are absorbed into the reference Reynolds number. Hence for laminar

flow, the dimensions of the body enter only as a scale factor. The solution

in transformed quantities is in fact, independent of the body length. In real

flows however, the body dimension feeds into the viscous solution through

viscous-inviscid interaction, turbulence and surface roughness.

Transformations are subsequently defined to absorb the boundary layer

growth and to avoid problems at the singularity point. The transformation

has been found to work well for laminar flow cases. The edge of the boun-

dary layer is usually within _=8. For zero pressure gradient flows, the

growth of _ in the _-_ plane is zero, whereas in other cases, the growth is a

function of the pressure gradient. For turbulent flows, however, the edge of

the boundary layer corresponds to large values of _. In this case, the value

of _o and the number of points km have to be carefully chosen. The distri-

bution of the _ grid can be uniform or stretched.

A streamwise marching method to solve the transformed equations has

been presented. The solution in the surface normal direction is obtained to

fourth-order accuracy by a two-point compact differencing method. The

differencing used in the stream surface plane is of second-order. However,

accuracy in the _ direction can be improved by using a dense mesh in that

direction. The grid distribution in the cross-flow direction is presently set up

to be the same as that of the inviscid grid in order to avoid interpolation

errors.

An interface procedure has been presented to accurately obtain the

inviscid edge conditions. The surface Euler equations are solved here on

the BL grid with the interpolated inviscid pressure distribution to obtain

smooth and accurate edge velocity values.

The metrics of transformation of the equations from the Cartesian sys-

tem to the curvilinear system are dependent on the way the curvilinear sur-

face grid is defined and measured. It can be orthogonal or non-orthogonal
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and the curvilinear coordinates need not necessarily be measured along the

same direction as they are defined. The six surface gradients defined at

each grid point uniquely determine the transformation. In the validation

cases presented in the report, the curvilinear coordinates have been defined

in several different ways to demonstrate the advantage of using the curvi-

linear coordinate system.

The program software implementing the solution procedure has been

presented in detail. The programs are organized so that the 3D boundary

layer solution or solution of any of its subsets can be accomplished by cal-

ling identical subroutines, but with different edge coefficients.

Finally, practical application of the software to solving boundary layer

flow past real wings and fuselages have been discussed. The examples

presented deal with a simple fuselage and wing geometry. However, the

programs are written in a general way so that it should be possible to apply

these programs to any fuselage or wing shape where the boundary layer

flow assumptions hold good. Only minor modifications may be necessary

depending on the case. Adequate details of the program structure have

been presented in this report to enable a user to make the necessary
modifications.
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APPENDIX: PROGRAM DETAILS

The boundary layer solution program is designed to provide for user

interaction and flexibility in application. Depending on the particular problem

being analyzed, program modifications will be necessary. Additional inputs

or outputs may be required. This implies that the user has to be familiar

with the structure of the program, variables used and the program logic.

The theoretical base has already been presented. In this Appendix, addi-

tional information will be provided to enable the user to modify the programs

as required. A formal input/output description is therefore not given.

Instead, it is proposed to present a description of the program structure, the

various subroutines and their function in the overall program. A list of com-

puter variabJes and its corresponding mathematical symbolS are given.

Information is also given about the library subroutines and on running the

program. A UNIX environment is assumed, though the programs can easily

be adapted to and can be run on non-UNIX machines as well.

A summary of the procedure and details of inputs required to run each

of the test cases is included. Also given are descriptions of the subroutines

and a list of the program variables. Finally, a complete listing of the pro-

grams required to run Case 10 of flow past a swept wing is given.

Program Size

The BL program size is mainly dependent on the BL grid dimensions,

im [nx] t, jm [ny], and km [nz]. These are set using PARAMETER state-

ments in the 'include' COMMON blocks file called 'lib/com'. The program

memory requirement calculated from the variable dimension statements

alone is approximately, 15(im.jm)+20(jm.km)+70(km). Added to this will be

the memory to store the program itself (which is much less than array

storage requirements). As an example, assuming single precision variables

and im=100, jm=30, km=50, the program size will be in the nieghbourhood

of 300 Kilobytes. The advantage of this small size is two-fold: desktops or

workstations are adequate, and faster execution (interactive processing is

possible). All the example cases in this report were run on a SUN 3/150

workstation with 2 Megabytes of memory.

t Computervariablenamesare enclosedin squarebrackets
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Units

Since the governing equations are non-dimensionalized by reference

quantities, units are important only when specifying inputs such as free-

stream pressure p* [pfs], free-stream temperature T* [tfs], wall temperature

T w [tws(i,j)], wall normal velocity w w [wws(i,j)] and reference length L

[reflen]. In addition, units are involved in the calculation of output quantities

such as boundary layer thickness tx, p [deltax], displacement thickness 5x

[dispx] momentum thickness 0x [thetax] and wall heat transfer rate qw [qdot].

A flag variable [iunit] is provided in the programs to operate in either US

units [iunit=0] or SI units [iunit=l].

[iunit]=O => U.S. Customary units (US)

p_ [pfs] in Ib/ft 2

T* [tfs] and T w [tws(i,j)] in o R

L* [reflen] in ft.

w w [wws(i,j)] in ft/sec

R* [rstar] = 1716.6 ft2/( sec2°R )

S* [sstar] = 198.6 °R

#s [amustd] = 2.27e-08 Ib sec/( ft 2 °R1/2)

Pw in Ib sec2/ft 4

Clw in Ib/(ft-sec)

[iunit]=l => International system of units (SI)

p* [pfs] in Pascal (i.e. Newton/m 2)

T_* [tfs] and T w [tws(i,j)] in o K

L* [reflen] in m.

w w [wws(i,j)] in m/sec

R* [rstar] = 287.059 m2/( sec2°K )

S* [sstar] = 110.333 °K

#s [amustd] = 2.27e-08 Ib sec/( ft 2 °R'/2)

Pw in Newton sec2/m 4

Clw in Newton/(m-sec)
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Program Structure of the BL Solver

The program is designed so that it can be run for a 2D case, axisym-

metric case or a 3D case with appropriate modifications. Running a 2D

case involves setting the dimension jm to 1 and suppressing the cross-flow

gradients. The axisymmetric case can be treated as a symmetry line flow

with metric h2 defined by the local radius of the body at each location. In all

cases, the flow equations are solved by the identical subroutines. The pro-

gram structure is outlined in the following sketch:

ORIGINAL ......I"/_.lr. I_

OF POOR QUALITY

1
I

I

I

J
t
I
I

l
I

J
I

I_

Structure of BL Program I

Open & rewind files

Call S/R inputs, SIR rinvis
_innHt.q. rAfArAnr.A _nnditinn_ _d_,_ v_lH<=_ _tt-

Call SIR initial

(initialize F,G,F',G',H,H" etc. profiles)

Set up marching loops inj (inner loop) and i (outer loop)

.;
Call SIR edgexxx (where xxx is stg, sim, sym, att, inf or 3d)

(generate edge coefft.s for the type of equations being solved)

Set up iteration loop for an (i,j) station

r
I Call SIR mmntm

l (solve x,y momentum equations for F,G,F',G')

I Call S/R cntnty

I (Integrate continuity equation for w)

Call SIR enrgy
I

(Solve energy equation for H and H')

I Call S/R updte

[ (Updatei,r,e,e',w.)
1

L - Check convergence (SIR cony)

Call SIR phys

(Output profiles, wall and physical quantities)

Call S/R nexstep

(Store i-1 and i-2 profiles)

End of calculation
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The program first reads the inputs (S/R inputs), followed by

reading/calculation of the BL grid, metrics and edge conditions (SIR rinvis).

The input quantities in SIR inputs are directly included in the subroutine itself

rather than reading from a file. This is done to keep the program flexible.

However, it also means that the program will have to be recompiled each

time any of the inputs are changed. Most of the inputs and calculated refer-

ence conditions (computed in S/R ref of file lib/blk.f) are output to file fort.2.

The inputs in S/R rinvis corresponding to the edge conditions and

metrics [x, y, ue, ve, hl, h2, g12] are, in some cases, read from unit 20. In

other cases, these quantities are analytically generated by FORTRAN state-

ments in a part of this subroutine. This subroutine S/R rinvis also includes

calculation of Pe, To, I_o [roe, te, amue] from the above quantities. The cal-

culation of Po presently assumes that there are no shocks present in the

flow between free-stream and the BL edge. If the body is sharp-tipped and

in supersonic flow, the conditions downstream of the oblique shock can be

specified as the free-stream condition with no other change. Otherwise, the

isentropic relation to calculate Pe will have to be replaced by an expression

for Po from p, u e and ve.

The profiles at i=1 are initialized in S/R initial. Usually an initial

Falkner-Skan or Karman-Polhausen profile is used to start the iterative pro-

cess. The viscosity ratios I, I1, 12and 13 are initialized to unity and their nor-

mal gradients to zero.

At each point (i,j), depending on the type of flow, the edge coefficients

are then generated. The expressions for these coefficients are listed in

Tables 2-7. These coefficients are functions of the gradients of the edge

conditions and metrics in _ and 11directions. These coefficients are calcu-

lated in S/R edgexxx, where 'xxx' stands for one of the following:

- stg for stagnation point flow

- sim for similarity profiles

- sym for symmetry line flow

- inf for infinite swept wing (locally or otherwise) flow

and bi [b0,bl,b2,...b7], the _ and _1 direction differencing coefficients.

flags [ix] and [iy] are also specified in these subroutines, which

att for attachment line flow

3d for general 3-D flow

These subroutines also contain statements to calculate a i [al,a2,a3]

The

can
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selectively suppress the gradients in the _ or TI directions to simulate 2D

flow, similarity flow etc.. Most of these quantities are in the common block

called 'edge'. This common block is a part of the 'include' file lib/com. The

common blocks are included in the program by the use of the 'include' state-

ment. For compilers which do not support the 'include' feature, the entire

common block file can be copied to the program in place of the 'include'

statement.

The solution of the x and y momentum equations at location (i,j) is done

in S/R mmntm (located in file lib/blk.f). This routine calls another routine

called S/R getfg (also located in lib/blk.f). S/R getfg obtains the values of F,

G, F' and G' [f,g,fp,gp] at (i,j,k) and 26 other nieghboring points correspond-

ing to different combinations of {i= i,il,i2}, {j= j,jl,j2,j3,j4,j5,j6,j7} and {k=

k,kl,k2}. These 108 values (evaluated once per iteration at a given (i,j)) are

contained in common blocks in the 'include' file !ib/com!oc= The block-

tridiagonal system elements of [a], [b], [c] and [r] are then computed as

given in Table 8. The solution of the system is efficiently achieved through

S/R blklu (LU decomposition with full pivoting), S/R blksolv (inversion of LU

decomposed system) and a number of other other supporting routines, all

contained in the file lib/lib.f. The F, G, F' and G' values are then updated.

The continuity equation is then solved in S/R cntnty (located in file

lib/blk.f). This involves fourth-order accurate integration of the continuity

equation with the current (n-th) iteration values of F, G, F' and G' (obtained

by another call to S/R getfg). The transformed normal velocity at the wall,

ww [ww] is used here as the initial value for the integration. The value of ww

is updated at the end of each iteration in S/R updte from the physical normal

velocity ww [wws] and the current solution.

The solution of the energy equation is achieved in S/R enrgy and fol-

lows closely the procedure for solving the momentum equations. However,

in the present case, h and h" [h,hp] values at (i,j) and surrounding points are

evaluated by a call to S/R gethi in addition to a call to S/R getfg. Further-

more, the calculation of Ds [dd5] and D'5 [dd5p] is also accomplished in the

subroutine S/R gethi, based on the current solution profile. The block-

tridiagonal system corresponding to Table 9 is then formed. The wall condi-

tion type [iwall=0,1 or 2] determines the elements [b] and [r] at k=l. If

iwall=l (temperature specified), the wall total enthalpy [hw] is specified; oth-

erwise [iwall=0 or 2], the normal gradient of the total enthalpy [hpw] is the

specified quantity. The system is inverted using the same subroutines as in

S/R mmntm.
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S/R updte is the final step in the iterative loop, wherein the viscosity
and the density ratios and the wall normal velocity are updated based on the
current solution.

I aF'max I I8H'm_ I
Convergence is tested on the ratios and Upon

IF'max I I H'max I

convergence, the physical quantities and profiles are calculated in S/R phys

based on expressions given in Chap. 6.

The _ and _ direction sweeps are continued till [ny]=[nylim] and

[nx]=[nxlim]. The storing of the profiles corresonding to the i-1 and i-2 levels

at the end of a 11 sweep is accomplished in S/R nextep. Differring

definitions of F and G at the boundary compared to the interior are also suit-

ably handled in this subroutine.

The dimensions of various arrays [nx], [ny], [nz] are set depending on

the case, in the 'include' block lib/com. When the array are changed, the

subroutines in the library files lib/lib.f and lib/blk.f are recompiled and loaded

along with the main program. The main program is case-dependent,

whereas, the library files are essentially the same except for changes in

array dimensions.

Given below are decriptions of all of the subroutines used in the BL cal-

culation. This is followed by a list of all the computer variables used in the

program and corresponding symbols. Subsequent to this, brief descriptions

of each of the test cases and the inputs are given.

A complete listing of the programs required to run Case10 (flow past a

swept wing) is also given subsequently. The complete set of programs for

all the test cases can also be made available upon request.
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Subroutine inputs t

Read in inputs to the BL program

Called from main program

Makes calls to s/r rinvis and s/r ref

Main inputs are:

p* [pfs]

T* [tfs]

M_ [amach]

L* [reflen]

Wall condition type:

[iwall]=0 -->

[iwall]=l -->

[iwall]=2 -->

Units used:

[iunit]=0 --> US units

[iunit]=l --> SI units

adiabatic wall

wall temperature specified

wall heat flux specified

Wall heat flux [qd] (if [iwall]=2), dimension ([nx],[ny])

Wall mass injection rate, [wws], dimension ([nx],[ny])

Number of stations in i and j direction, [nppi] and [nppj] for profile output

Profile output stations, [ip] and [jp], dimension maximum of 100

Normal grid parameters, _e [zmax], ke [ak]

limits for i and j sweeps [nxlim] and [nylim]

Convergence limits [epsf] and [epsh]

BL edge locating constants [fedge] and [gedge]

Other inputs as given in S/R rinvis and S/R ref

1 Program variable names are enclosed in square brackets
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Subroutine ref

• Located in library program file lib/blk.f

• Calculates reference quantities

• Called by S/R inputs

• Some of the reference quantities calculated are:

Reference temperature Tref [trs]

Free-stream sonic velocity c" [velson]

Free-stream velocity u_* [ufs]
*

Reference viscosity J_ref [amuref]

Free-stream viscosity !_*_ [amuinf]

Reference Reynolds number per unit length [rereff]

Free stream Reynolds number per unit length [refsf]

Reference total enthalpy Href [hrefs]

Edge enthalpy, He [htot]

Subroutine rinvis

Called from S/R inputs

• Read/specify the following:

BL grid [x] (dimension [nx]) and [y] (dimension [ny])

Edge velocities [ue] and [ve] (both dimensioned to ([nx],[ny]))

Velocity gradients [re] (dimension [ny]) or [vey] (dimension [nx]),

required

Metrics h 1 [hl], h2 [h2] and g12 [g12], all dimensioned to ([nx],[ny])

• Calculate Te [te] and Pe [roe], both dimensioned to ([nx],[ny])

Calculation of [te] assumes constant total enthalpy at BL edge

Calculation of [roe] based on isentropic process from free-stream

if
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Subroutine initial

• Called once from the main program

• Initializes profiles to start the iterative calculation

Initialize F [f] and G [g]; fourth-order plynomial used

Me
f(j,nz) is generally set to 1; g(j,nz) set to m

Mr

Initialize F' [fp] and G' [gp] by differentiating F and G

Initialize H and H'; H set to He; H' set to zero

Initialize w,ll,12,13,1'l,l'2,1'3,1,1',e and 0'

Subroutine updte

Called from main program after each iteration

Updates quantities 11,12,13,1'1,1'2,1'3,1,1',0 and 0'

• If mass injection present, update ww

ww is a function of current solution and the specified ww

• Update Iw if qw is specified (iwall=2).

• Simplified turbulence and transition models can be included

E1, 82, 8H and a can be used in eq.s (38), (42), (45) and (46) to calcu-

late I1, 12and 13

81 = E2 = 8H-- G = 0 assumed
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Subroutine edgexxx

• xxx stands for one of the following:

stg 3D stagnation point flow

sim Similarity flow

sym Symmetry line flow

3d 3D BL flow

att Attachment line flow

inf Infinite swept wing flow

• Called from main program once for each (i,j) location

• Evaluates the following edge coefficients:

A1 ,A2,A3,A4 or [aal s],[aa2s],[aa3s],[aa4s]

B1, B2,... ,B6,B3,B4 or [bbl ],[bb2],... ,[bb6],[b3s],[b4s]

C 1,C2,...,C6,_4,_ 5 or [ccl],[cc2],...,[cc6],[cc4s],[cc5s]

D 1,D2,D3,D 4 or [ddl],[dd2],[dd3],[dd4]

differencing coefficients, a 1,a2,a 3 or [al],[a2],[a3]

TI differencing coefficients, bo,b 1,b2,...,b 7 or [b0],[bl],[b2],...,[b7]

Corresponding j indices, [j 1],[j2],[j3],[j4],[j5],[j6],[j7]

• specifies edge value g(j,nz)

• specifies _ and 11differencing flags, [ix] and [iy]

[ix]=0 indicates no x differencing, [iy]=0 indicates no y differencing

• evaluates metric factors 024,025,026,C34,035,036

The quantities below may be evaluated depending on the case:

ah 1/(:3x,ah 1/aY, ah2/ax,(3h2/(3Y, ag 12/ax,ag 12/ay, aue/ax,aue/ay, aVe/aX,(3ve/aY
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Subroutine nexstep

• Called at the end of each 1] sweep

• F,F',G,G',H,H" values at i and (i-1) levels are stored in arrays before

advancing to the next i level

[fl],[fpl],[gl],[gpl],[hhl],[hpl] arrays used to store (i-1) level profiles

[f2],[fp2],[g2],[gp2],[hh2],[hp2] arrays used to store (i-2) level profiles

Subroutine phys

• Transformation to physical quantities after solution at (i,j) is obtained

• Calculates the following quantities:

tx, p, ty,p, ex, p, ey,p, Cf,x___, Cf,y_o_, qw and other quantities as required

• If i=ip(...) or j=jp(...), outputs profiles of z*,u*,v*,T*,p* etc..

Subroutine mmntm

• Located in lib/blk.f

• Called once per iteration for each (i,j)

• Forms the block-tridiagonal matrix corresponding to the discretized

momentum equations

• Inverts the system and updates F,F',G,G'

• Calls S/R getfg to evaluate F,F',G,G' values at point (i,j,k) and 26 points

surrounding it, required in consructing the matrix; S/R getfg called km times

from S/R mmntm

• S/R blklu and S/R blksolv in lib/lib.f called to invert the system
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Subroutine cntnty

• Located in lib/blk.f; called once per iteration for each (i,j)

• Integrates the continuity equation to fourth-order accuracy with a given ini-

tial value [ww] of wall normal velocity

• Calls S/R getfg (km-1) times to evaluate F,F',G,G' values at point (i,j,k)

and 26 points surrounding it, required in the integration

Subroutine enrgy

• Located in lib/blk.f; called once per iteration for each (i,j)

• Evaluates the block-tridiagonal matrix corresponding to the discretized

energy equation

• Inverts the system and updates H, H'

• Calls S/R gethi and S/R getfg to evaluate H,H',F,F',G,G" values at (i,j,k)

and 26 surrounding points ; each subroutine called km times.

• S/R blklu and S/R blksolv in lib/lib.f called to invert the system

Subroutine getfg

• Evaluates F,F',G,G' values at (i,j,k) and 26 surrounding points

• The points are (i,j), (i,j-1), (i,j.l), (i-l,j), (i-l,j.l), (i-1,j+2), (i-l,j-1), (i-l,j-2),

(i-2,j) at levels k, (k-l) and (k+l)

• Boundary adjacent points handled separately
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Subroutine gethi

• Evaluates H,H' values at (i,j,k) and 26 surrounding points

• Evaluates Ds and D's once per iteration

Library subroutines

• Located in lib/lib.f

• Given below is a list of library subroutines/functions:

Function deri22: calculates derivative of yp (2D array) with respect to

xp (2D array) at point (i,j) in the direction i

Function derj22: calculates derivative of yp (2D array) with respect to

xp (2D array) at point (i,j) in the direction j

Function derj21: calculates derivative of yp (2D array) with respect to

xp (1D array) at point (i,j) in the direction j

Function deri21: calculates derivative of yp (2D array) with respect to

xp (1D array) at point (i,j) in the direction i

Function derk: calculates derivative of yp (1D army) with respect to xp

(1D array) at point k

Function sumint: Integrates function yp (1D array) with respect to xp

(1D array) from 1 to i by trapezoidal formula

Function sumx21: Integrates function yp (2D army) with respect to xp

(1D array) from 1 to i by trapezoidal formula

Function sumx22: Integrates function yp (2D army) with respect to xp

(2D array) from 1 to i by trapezoidal formula

S/R blklu: LU decomposition of a block-tridiagonal matrix (full pivoting)

S/R blksolv: Inversion of a LU decomposed system; supporting rou-

tines are; S/R cmult, S/R lu, S/R solve, S/R ax

Function quad: quadratic interpolation using (xl ,yl), (x2,y2), (x3,y3)

Function stlin: Linear interpolation at x given (xl,yl), (x2,y2)

S/R solv3: Solves a 3x3 system [a].[x]=[b]

Functions sind, cosd, tand: sin, cos and tan of angles expressed in

degrees.
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Important Variables Used in the Program

Program
Variable

Symbol Description

aals

aa2s

aa3s

aa4s

ak

akl

akl 1

akl2

akx

al

all

allp

alp

alpha

all

allp

a12

al2p

amach

amue

amui

amuinf

amuref

amustd

_,2

A,

ke

I

13

13

I'

oL

11

l'I

12

r2

M.

3

lower diagonal block of block-tridiagonal sytem
Maximum dimension a(4,4,nz) in s/r mmntm and a(2,2,nz) in s/r enrgy

Coefficient of transformed continuity equation, evaluated in s/r edgexxx

(where xxx stands for stg, sire, sym, 3d, inf or att)

Coefficient of transformed continuity equation (sir edgexxx)

Coefficient of transformed continuity equation (s/r edgexxx)

Coefficient of transformed continuity equation (s/r edgexxx)

Exponential stretching factor for _ (s/r inputs)

h2p_-_eUe at i (s/r edgexxx)

h2_ at i-1

h2_ at i-2

F_derivative of h2 pe_-_-e-e-e-e-'e_e

PP" (s/r updte), dimensioned to al(nz)
Pel_,

I EH am
_(l+-_----_-t I ; (s/r updte), dimensioned to all(nz)

Normal derivative of 13(s/r updte), array allp(nz)

Normal derivative of I (s/r updte), array alp(nz)

Angle of attack in degrees

I (I+-_.-F) (s/r updte), dimensioned to all(nz)

Normal derivative of I1 (s/r updte), dimensioned to allp(nz)

I (1+.-_ ]') (s/r updte), dimensioned to al2(nz)

Normal derivative of 12(s/r updte), dimensioned to al2p(nz)

Mach number, input in s/r inputs

non-dimensional edge viscosity
dimensioned to amue(nx,ny) calculated in sir rinvis

non-dimensional free-stream viscosity (s/r ref)

Dimensional free-stream viscosity at T._; units, Pa.sec (SI) or Ib.sec/(ft**2) (US)

Dimensional reference viscosity at Tr'el; units, Pa.sec (SI) or Ib.sec/(ft**2) (US)

Suthedand viscosity coefficient

Pa.sec/(°K)**0.5 (SI) or Ib.sec/(ft**2)/(°R)**0.5 (US)



al ,a2,a3

b

bd

bdl

bd2

bd3 to bd7

bet

bl

b2

b3

b3s

b4

b4s

b5

b6

C

ccl

cc2

cc3

cc4

cc4s

cc5

ccSs

cc6

cfxi

cfyi

crs

c241

c251

c261

al,a2,a3

51

bo

b2

b3 to b7

P

B1

B2

B3

Bs

94

B5

Bs

01

02

C3

C4

C4

C5

C5

Cs

Of,x-.

Cf,y__

Cr,S

C24

C25

C2s
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coefficients of _ derivative, Eq. 124

diagonal block of block-tridiagonal system
maximum dimension b(4,4,nz) in sir mmntm and b(2,2,nz) in sir enrgy

•q differencing coefficient, eq 126

11differencing coefficient, eq 126

11differencing coefficient, eq 126

TI differencing coefficients, eq 126

X/(X-1)

coefficient, x momentum (sir edgexxx)
where xxx stands for stg,sim,sym,3d,inf ot att

coefficient, x momentum (s/r edgexxx)

coefficient, x momentum (sir edgexxx)

coefficient, x momentum (sir edgexxx)

coefficient, x momentum (s/r edgexxx)

coefficient, x momentum (sir edgexxx)

coefficient, x momentum (s/r edgexxx)

coefficient, x momentum (s/r edgexxx)

super-diagonal block of block-tridiagonal sytem
Maximum dimension c_,(4,4,nz)in sir mmntm and c(2,2,nz) in s/r enrgy

coefficient, y momentum (sir edgexxx)
where xxx stands for stg,sim,sym,3d,inf ot art

coefficient, y momentum (s/r edgexxx)

coefficient, y momentum (s/r edgexxx)

coefficient, y momentum (sir edgexxx)

coefficient, y momentum (s/r edgexxx)

coefficient, y momentum (sir edgexxx)

coefficient, y momentum (sir edgexxx)

coefficient, y momentum (s/r edgexxx)

Skin friction coefficient in x direction

Skin friction coefficient in y direction

Stagnation point parameter (eq. 61)

Metric coefficient

Metric coefficient

Metric coefficient
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c341

c351

c361

ddl

dd2

dd3

dd4

dd5k

dd5kl

dd5k2

dd5pk

dd5pkl

dd5pk2

dd6

dd7

delfp

delhp

delta

dfpmax

dhpmax

dispx

dpx

dpy

dxi

dxil

epsf

epsh

erru

errv

f

fe

C34

C35

C3s

D+

D2

D3

D4

D5

D' s

Cos 13

5F'

6H'

t*

8F'max

6H'rnax

AXi

Axk.1

EF

£1

F

f.
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Metric coefficient

Metric coefficient

Metric coefficient

coefficient, energy equation (s/r edgexxx)
where xxx stands for stg,sim,sym,3d,inf ot att

coefficient, energy equation (s/r edgexxx)

coefficient, energy equation (s/r edgexxx)

coefficient, energy equation (sir edgexxx)

coefficient Ds at point k

coefficient Ds at point k-1

coefficient Ds at point k+l

Ds' at point k

Ds' at point k-1

Ds' at point k+l

(7-1)M 2 I-_
a

g12

hih2

Change in fp of profile in any iteration

Change in hp of profile in any iteration

boundary layer thickness, ft (US) or m (SI)

Maximum in profile of delfp

Maximum in profile of delhp

Displacement thickness in x direction, in ft (US) or m (SI)

pressure gradient in x direction, local value

pressure gradient in y direction, local value

Step size in F,at i = XrX__1

Step size in F_at i-1 = X_-l-Xl-2

Convergence limit for momentum equations

Convergence limit for energy equation

Error tolerance on ue for S.E. solution

Error tolerance on ve for S.E. solution

u/ue, dimensioned to f(ny,nz)

o_ue/o_,dimensioned to fe(ny)
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fedge

fp

fpl

fp2

fl

f2

g

gain

gP

gpl

gp2

gref

grefx

grefy

gl

g12

g121

g12xl

g12yl

g2

h

hcon

hhl

hh2

hp

hpw

hpl

hp2

hrefs

htot

hw

F*

F'_-I.I

F't_2,j

Fi-l,j

FJ-2,i

G

Y

G'

G'__I,j

G't-2,1

Vr

_Vr/O_x

@Vr_

G_-I,j

g_2

g12

_lz'@x

Gi-2,j

H

Hi-1

Hi_2

H'

H'.

H'i_1

H'i_2

He

Hw
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value of F to find edge of boundary layer, =0.99, for example

dimensioned to fp(ny,nz)

dimensioned to fp l(ny,nz)

dimensioned to fp2(ny,nz)

dimensioned to fl(ny,nz)

dimensioned to f2(ny,nz)

v/vr dimensioned to G(ny,nz)

ratio of specific heats

dimensioned to gp(ny,nz)

dimensioned to gpl(ny,nz)

dimensioned to gp2(ny,nz)

Reference quantity for v

dimensioned to gl(ny,nz)

metric coefficient, dimension g12(nx,ny)

local value of g12 at i,j

local value of x gradient of g12

local value of y gradient of g12

dimensioned to g2(ny,nz)

non-dimensional total enthalpy, dimensioned to h(ny,nz)

1

M2(7--1 )

H at i-1 level, dimensioned to hhl(ny,nz)

H at i-2 level, dimensioned to hh2(ny,nz)

normal gradient of H, dimensioned to hp(ny,nz)

local value of H" at the wall, i.e. at (i,j, 1)

H'at i-1 level, dimensioned to hpl(ny,nz)

H'at i-2 level, dimensioned to hp2(ny,nz)

ft2 m2
Reference total enthalpy value, eq.(14), _ (US) or _sec2 (SI)

BL edge total enthalpy, eq.(15)

local value of H at the wall, i.e. at (i,j,1)
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hl

h2

i

ii

ford

ip

it

itmax

iunit

iwall

ix

iy

J

jbl

ji

jl

j2

j3

j4

j5

j6

j7

k

kmaxe

kmaxm

kl

k2

nppi

nppj

nx

nxlim

ny

51

h2

i

J

h

J2

J

J4

Js

Js

J7

k

kl

k2

im

jm
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metric coefficient, array h l(nx,ny)

metric coefficient, array h2(nx,ny)

index in the x direction

maximum dimension of inviscid grid in x direction

i value at which x differencing becomes 2nd order

i values for which profiles are to be output, array ip(nppi)

iteration number

maximum number of iterations

unit flag, =0 for US units, =1 for SI units

wall condition flag, =0 for adiabatic wall
=1, temperature specified, =2 heat flux specified

flag, =0 indicates no discretization in the x direction

flag, =0 indicates no discretization in the y direction

index in the crossflow or y direction

flag for boundary-adjacent point, =0 for interior point
=1 if j=2, =2 of j=nylim-1, --3 if j=ny

maximum dimension of inviscid grid in y direction

j-1

j-2

J

j+l at level i-1

j+2 at level i-1

j-1 at level i-1

j-2 at level i-1

index in the z or t; direction

k value corresponding to largest 8H' in an iteration

k value corresponding to largest qSF"in an iteration

k-1

k+l

number of i stations at which profile output is required

number of j stations at which profile output is required

maximum dimension of BL grid in x direction

value of i at which streamwise march is to be stopped

maximum dimension of BL grid in y direction
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nylim

nz

nzl

om

pb

ph

pfs

phil .

pi

prl

psi

qd

qdot

retlen

refs

refsf

reinff

rereff

reref

roe

rofs

rstar

S

sstar

stild

stilde

sl

te

tf

ffs

km

fo

Cp

pl

G

L°

Re=

Reref

Pe

pl

R"

S"

S

Sl

T_

T1

value of j at which y march is to be stopped

maximum dimension of gridin the normal ( _ ) direction

km-1

factor controlling x differencing order

pressure coefficient on the BL grid
array dimensioned to pb(nx,ny)

pressure coefficient on the inviscid grid
array dimensioned to ph(ii,ji)

free stream static pressure, Ib/ft2 or Pa.

value _ at i,j

Prandtl number (laminar value)

_/uv'(p_-esl)

dimensional heat flux, Ib/(ft.sec), input s/r inputs

dimensional heat flux, calculated sir phys

reference length, ft or m.

free-stream Reynolds number based on x°

free-stream Reynolds number per unit length

Free stream Reynolds number per unit length

Reference Reynolds number per unit length

Reference Reynolds number based on L°

non-dimensional edge density, array roe(nx,ny)

fTee-stream density, Ib sec2/ft4 (US) or Pa sec2/m2 (SI)

Gas constant, sec2°R (US) or sec2°K (SI)

partial derivatives of (x,y) w.r.t. (xb,yb,zb); array s(6,nx,ny)

Reference temperature for Sutherland formula, °R (US) or (SI)

S"

Tret Te

S*

T;.,

distance in x direction over surface

edge temperature, array te(nx,ny)

free-stream temperature, non-dimensional

free-stream temperature, °R (US) or °K (SI)
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lh_ax

the1

the2

tphys

trs

tws

u

uden

ue

ufs

uh

us

uphys

v

vden

ve

vh

us

velson

vey

w

wh

ws

ww

wws

x

xb

xh

xs

Y

yb

yh

ys

9x

T"

u

ue

ul

U"

V

Ve

ge

W

Ww

X'

y'

momentum thickness in x direction, ft. or m.

ratio, pJp = T/T e

normal gradient of 8

dimensional value of temperature, °R or °K

reference temperature, u_R"

dimensional value of wall temperature

non-dimensional vcelocity in x direction

magnitude of reference velocity for F

edge velocity, array (nx,ny)

free stream velocity, ft/s or rn/s

Inviscid velocity component (Cartesian) in x' direction

Inviscid surface velocity, interpolated

dimensional streamwise velocity, ft/s or m/s

non-dimensional velocity in y direction

magnitude of reference velocity for G

edge velocity, array (nx,ny)

Inviscid velocity component (Cartesian) in y' direction

Inviscid surface velocity, interpolated

speed of sound, fVs or m/sec

y gradient of ve

transformed normal velocity

Inviscid velocity component (Cartesian) in z' direction

Inviscid surface velocity, interpolated

wall value of w

wall value of w °

streamwise coordinate, array x(nx)

Cartesian coordinate, array xb(nx,ny)

Cartesian coordinate of inviscid grid, array xh(ii,ji)

surface coordinate for inviscid grid, array xs(ii,ji)

crossflow coordinate, array y(ny)

cartesian coordinate, array yb(nx,ny)

Cartesian coordinate of inviscid grid, array yh(ii,ji)

surface coordinate for inviscid grid, array ys(ii,ji)
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z

zh

zb

zcon

zmsx

zphys

_e

Z°

normal coordinate, array z(nz)

Cartesian coordinate of inviscid grid, array zh(ii,ji)

cartesian coordinate

integrated normal distance scale for normal coordinate

edge value of

dimensional value of normal coordinate, ft. or m., array zphys(nz)
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Case 1: Program Notes

Program

File name is stg_bl/casel.f

Library routines are in lib/blk.f and lib/lib.f

To Run Program

Edit lib/corn and set [nx]=l, [ny]=l, [nz]=41

Recompile lib/blk.f with f77 -c blk.f

Compile stg_bl/casel.f with f77 -o case1 casel.f ../lib/blk.o ../lib/lib.o

Run with : case1

Inputs

[crs], [pfs], [tfs], [amach] in S/R inputs

[fe(1)], [hl (1,1)] if physical quantities are required in S/R rinvis

Variations

Different [crs] values in S/R inputs (0 to 1); different values of [ak]

[iwall]=l in S/R inputs, wall temperature [tws(1,1 )] to be specified

[iwall]=2 in S/R inputs, wall heat flux [qd(1,1)] to be specified

[wws(1,1)] transpiration at the wall in units of velocity can be specified

Different [nz] values by editing lib/com and recompiling lib/blk.f

Program Description

This program corresponds to obtaining solution profiles at a single station i=1
and j=l. The inputs to the program and boundary conditions are provided in
S/R inputs. BL edge conditions are specified in S/R rinvis. Calculation of refer-

ence quantities is done in S/R ref in lib/blk.f. The initial profiles are specified in
S/R initial.

The edge coefficients as given in Table 1 are evaluated in S/R edgestg.
The momentum equations are solved in S/R mmntm, the continuity equation in
S/R cntnty and the energy equation in S/R enrgy. The subroutines getfg and
gethi obtain the F, G, F', G', H, H' values at points (i,j) and surrounding points
depending on the x and y differencing flags [ix] and [iy]. In the present case,
since [ix] and [iy] are set to zero in S/R edgestg, there is no x or y differencing.
The block-tridiagonal system is solved by library routines contained in lib/lib.f.
Update of viscosity and density ratios during the iteration is done in S/R updte.

After convergence of the iteration, the physical quantities and profiles are output
in S/R phys.
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Results

fort.2

fort.3

fort.4

fort.!O

has output of input data and reference conditions

profile output from S/R phys

has output of physical quantities.

has.profile output; see S/R phys for the corresponding write

statements; these write statements to be modified as required.

Caution

(1) To simulate a very cold wall case, [tws(1,1)] cannot be set to zero since for-
mulation involves density ratio [the1] and quantities [al], [alp] etc. which are
functions of [the1]. Setting [tws(1,1)] to a small value can be done for this case.

(2) [roe(i,j)] is calculated in S/R rinvis assuming isentropic process between
free-stream and BL edge. If a detached shock is present in front of the blunt
body, [roe(i,j)] is to be calculated based on normal shock relations. Alterna-
tively, conditions downstream of the shock can be specified.



-182-

outputfile stg_bl/fort.2_casel

Stagnation point flow Case 1

Physical quantities are in U.S. units

Wall condition : Adiabatic wall

Inputs

nx, ny, nz = i, i, 41
zmax = 6.00

reflen = 1.000000

pfs = 2116.000

tfs = 520.00

mach no = 0.500

trs = 182.00

ufs = 558.85

ref Re no per unit length =

fs Re no per unit length =

fs sonic vel = 1117.70

amuinf = 0.3745792e-06

amuref = 0.1464415e-06

rofs = 0.2371347e-02

hrefs = 0.3123120e+07

f-edge = 0.990000

0.9049514e+07

0.3537902e+07

ORIGINAL

OF POOR
PAGE IS

QUALITY

nxlim = 1

iwall = 0

iunit= 0

ak= I.i00000

epsf = 0.1000000e-04

epsh= 0.1000000e-04

crs = 0.

Wall conditions (tws,qd used only

i w_s tws

1 0. 400.0000

if iwall=l

qd

-600.0000

or 2)

zeta stretching factor ak=

zeta distribution

,

0.6291560e-01

0.1550304

0.2898956

0.4873517

0.7764474

1.199712

1.819415

0.1355647e-01

0.8276363e-01

0.1840899

0.3324416

0.5496434

0.8676486

1.333240

2.014912

i.i0000

0.2846859e-01

0.1045965

0.2160553

0.3792422

0.6181642

0.9679699

1.480121

2.229960

0.4487193e-01

0.1286126

0.2512174

0.4307230

0.6935372

1.078323

1.641689

2.466513



2.726721 3.012949

4.055108 4.474175

6.000000
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3.327801

4.935149

3.674138

5.442221

fe= 25.00000

iterating at i= 1 j= 1

iter=

iter= 2 dfp max= 0

iter= 3 dfp max= 0

iter = 4 dfp max = 0

iter= 5 dfp max = 0

iter= 6 dfp max= 0

iter = 7 dfp max= 0

1 dfp max= 0 3409062e+00 dhp max = 0.1957642e-06 at (1,39)

2060392e-01 dhp max= 0.1957642e-06 at (1,39)

3460014e-02 dhp max= 0.1953470e-06 at (1,39)

7061199e-03 dhp max= 0.1439067e-06 at (2,34)

1581609e-03 dhp max= 0.1503779e-06 at (2,33)

3731292e-04 dhp max= 0.3007552e-06 at (3,33)

8927242e-05 dhp max= 0.2255658e-06 at ( 9,33)

end of calculation

Output file stg_bl/fort.4_casel

dispx= 0.6617032e-04 deltax= 0.2441325e-03
thetax= 0.2984530e-04

qdot = 0.
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Case 2: Program Notes

Program

File name is sim_bl/case2.f

Library routines are in lib/blk.f and lib/lib.f

To Run Program

Edit lib/com and set [nx]=21, [ny]=3, [nz]=41

Recompile lib/blk.f with f77 -c blk.f

Compile sim_bl/case2.f with f77 -o case2 case2.f ../lib/blk.o ../lib/lib.o

Run with : case2

Inputs

[pfs], [tfs], [amach], [reflen] in S/R inputs; [iwall]=0

[nppi] and [ip] refer to i locations where profile output is required

[x(i),i=l,nx] distribution in S/R rinvis; [hl], [h2], [ue] are equal to 1

US units are used, [iunit]=0

Variations

[iwall]=l in S/R inputs, wall temperature [tws(i,1),i=l ,nx] to be specified

[iwall]=2 in S/R inputs, wall heat flux [qd(1,1),i=1 ,nx] to be specified

[amach]=0.05 to approximate incompressible flow

Program Description

This program corresponds to obtaining solution profiles at [nx] stations (at j=l)
of a flat plate. However, [ny] is set to 3 since y gradient of the metrics are cal-
culated in S/R edgesym (equal to zero in the present case). The y direction
equation and gradients are suppressed. The inputs to the program and boun-
dary conditions are provided in S/R inputs. BL edge conditions are specified in
S/R rinvis. The non-dimensional free-stream velocity [ue(i,1),i=l,nx] is equal to
unity as also are the metrics [hl(i,1)] and [h2(i,1)]. Calculation of reference
quantities are done in S/R ref in lib/blk.f. The initial profiles are specified in S/R
initial.

The edge coefficients corresponding to the similarity profile at leading edge
i=1 are evaluated in S/R edgesmc (see Table 7). The x and y differencing flags
[ix] and [iy] are set to zero. The edge coefficients corresponding the 2D flow
downstream of the leading edge are evaluated in S/R edgesym, which are from

Table 4 with the edge cross flow velocity gradient [dvy(i)] equated to zero. The
x differencing flag [ix] is now set to 1 here which means that streamwise gra-

dients will be calculated. The F, G, F', G', H, H' profiles at i-1 and i-2 locations
are stored at the end of iteration convergence in S/R nexstep. The momentum
equations are solved in S/R mmntm, the continuity equation in S/R cntnty and
the energy equation in S/R enrgy. The subroutines getfg and gethi obtain the
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F, G, F', G', H, H' values at points (i,j) and surrounding points depending on the
x and y differencing flags [ix] and [iy]. When wall heat flux is specified, the
corresponding H' at the wall is calculated from equation (113). Since this equa-
tion involves quantities based on the current solution, H' at the wall will be
recalculated in SIR updte based on the current solution. The physical quantities
of BL thickness [deltax], momentum thickness [thetax], displacement thickness
[dispx], heat flux [qdot], skin friction coefficient [cfxi] as well as profiles at
selected stations are output in S/R phys.

Results

fort.2

fort.3

fort.4

fort.10

has output of input data and reference conditions

has profile output; see S/R phys for the corresponding write

statements; these write statements to be modified as required.

wall and integrated quantities (S/R phys)

profile output



file sim_bl/fort.2_case2, partial listing

Flow past flat plate : Test case # 2

Physical quantities are in U.S. units

Wall condition : Wall heat flux specified

Inputs

nx, ny, nz = 21, 3, 41
zmax = 8.00

reflen = 5.000000

pfs = 400.0000
tfs = 400.00

mach no = 3.000

trs = 5040.00

ufs = 2940.86

ref Re no per unit length =

fs Re no per unit length =
fs sonic vel = 980.29

amuinf = 0.3033745e-06

amuref = 0.1550445e-05

rofs = 0.5827506e-03

hrefs = 0.2402400e+07

f-edge = 0.990000

0.I105351e+07

0.5649077e+07

ORIGINAL PAGE IS
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nxlim= 21

iwall = 2

iunit= 0

ak= i.i00000

epsf = 0.1000000e-04

epsh= 0.5000000e-04
iord= 5

Wall conditions

i wws tws qd

1 0.

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0.

i0 0.

Ii 0.

12 0.

1007.270

1007 270

1007 270

1007 270

1007 270

1007 270

1007 270

1007 270

1007 270

1007 270

1007 270

i000 000

0

0

0

0

0

0

0

0

0

0

0

-86. 67000



13 0
14 0
15 0
16 0
17 0
18 0
19 0
20 0
21 0

stretching factor
zeta distribution

.

0.8388747e-01

0.2067071

0.3865274

0.6498023

1 035263

1 599617

2 425886

DJDDZ_

5 406810

8 000000
Profiles will

i= II i= 15

iflt = 1

980

960

940

920

900

880

860

840

820

-187-

0000

0000

0000

0000

0000

0000

0000

0000

0000

ak= i. I0000

0.1807530e-01

0.1103515

0.2454532

0.4432555

0.7328579

1.156865

1.777654

2.686550

4.017266

5.965567

be output at 3
i= 21 i=

i x ue

-283 2600

-401 2100

-500 ii00

-588 1200

-668 2100

-742 4200

-811 5800

-877 i000

-939 2600

0.3795813e-01

0.1394620

0.2880738

0.5056563

0.8242190

1.290627

1.973494

2.973280

4.437068

6.580199

stations

ORIGINAL PAGE IS
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0.5982924e-01

0.1714835

0.3349565

0.5742972

0.9247162

1.437765

2.188919

3.288684

4.898850

7.256294

1

2

3

4

5

6

7

8
9

i0

ii

12

13

14

15

16

17

18

19

20

21

.

0 5000000e-02

0 1000000e-01

0 1500000e-01

0 2000000e-01

0 2500000e-01

0 3000000e-01

0 3500000e-01

0 4000000e-01

0 4500000e-01

0 5000000e-01

0 5500000e-01

0 6000000e-01

0 6500000e-01

0 7000000e-01

0 7500000e-01

0 8000000e-01

0 8500000e-01

0 9000000e-01

0 9500000e-01

0 9999999e-01

1.000000

1.000000

1.000000

1.000000

1.000000

1.000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000

1 000000
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Case 3: Program Notes

Program

File name is sim_bl/case3.f

Library routines are in lib/blk.f and lib/lib.f

To Run Program

Edit lib/corn and set [nx]=101, [ny]=3, [nz]=41

Recompile lib/blk.f with f77 -c blk.f

Compile sim_bl/case3.f with f77 -o case3 case3.f ../lib/blk.o ../lib/lib.o

Run with : case3

Inputs

[pfs], [tfs], [amach], [reflen] in S/R inputs; [iunit]=l (SI units)

Th,-.o.-,,,,_,,.,,., ,-,_rr_o_r,,-_Nvu,,ooFu, ,u to ,.,u,"""'*""""",,.,,,,u,,o downstream uf- the uu.quu-'-'..... shock

[iwall]=l ; Wall temperature [tws(i,1 ),i=1 ,nxlim] specified

[nppi] and [ip] refer to i locations where profile output is required

[x(i),i=l,nx] distribution in S/R rinvis

[hl], [h2] are defined in S/R rinvis for a cone; [ue] is equal to 1

Mass injection [wws(i,1)] at wall specified in S/R inputs

Note that [wws] is input as density multiplied by normal velocity

Variations

[wws(i,1)] set to different values (suction, blowing or no injection)

Program Description

This program corresponds to obtaining solution profiles at [nx] stations (at j=l)
of a cone in supersonic flow. However, [ny] is set to 3 since y gradient of the
metrics are calculated in S/R edgesym (equal to zero in the present case). The
y direction equation and gradients are suppressed. The inputs to the program
and boundary conditions are provided in S/R inputs. BL edge conditions are

specified in S/R rinvis. The non-dimensional free-stream velocity [ue(i,1),i=l,nx]
is equal to unity The metrics [hi(i,1)] and [h2(i,1)] are functions of x and the
cone half-angle. Calculation of reference quantities are done in S/R ref in
lib/blk.f. The initial profiles are specified in S/R initial.

The edge coefficients corresponding to the similarity profile at leading edge
i=1 are evaluated in S/R edgesmc (see Table 7). The x and y differencing flags
[ix] and [iy] are set to zero. The edge coefficients corresponding the 2D flow
downstream of the leading edge are evaluated in S/R edgesym, which are from
Table 4 with the edge cross flow velocity gradient [dvy(i)] equated to zero. The

x differencing flag [ix] is now set to 1 here which means that streamwise gra-
dients will be calculated. The F, G, F', G', H, H' profiles at i-1 and i-2 locations
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are stored at the end of iteration convergence in S/R nexstep. The momentum

equations are solved in S/R mmntm, the continuity equation in S/R cntnty and

the energy equation in S/R enrgy. The subroutines getfg and gethi obtain the
F, G, F', G', H, H' values at points (i,j) and surrounding points depending on the

x and y differencing flags [ix] and [iy]. The transformed velocity at the wall [ww]

is calculated from equation (1 12). Since this equation involves quantities based
on the current solution, [ww] is recalculated in S/R updte based on the current

solution. The physical quantities of BL thickness [deltax], momentum thickness

[thetax], displacement thickness [dispx], heat flux [qdot], skin friction coefficient

[cfxi] as well as profiles at selected stations are output in S/R phys.

Results

fort.2

fort.3

fort.4

fort.1

has output of input data and reference conditions

has profile output; see S/R phys for the corresponding write

statements; these write statements to be modified as required.

wall and integrated quantities (S/R phys)

profile output



file sim bl/fort.2 case3:
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partiallisting

Flow past a cone with mass injection: Case

Physical quantities are in S.I. units

Wall condition : Temperature specified

Inputs

nx, ny, nz = i01, 3, 41
zmax = 8.00

reflen = 1.000000

pfs = 1260.120
tfs= 82.53

mach no = 6.833

trs= 5394.64

ufs = 1244.42

ref Re no per unit length =

fs Re no per unit length =
fs sonic vel = 182.12

amuinf = 0.5668721E-05

amuref = 0.I049554E-03

rofs = 0.5318981E-01

hrefs = 0.8291856E+05

f-edge = 0.995000

0.6306532E+06

0.I167644E+08

3
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nxlim= 85

iwall= 1

iunit= 1

ak= 1.020000

epsf= 0.1000000E-03

epsh= 0.1000000E-03
iord = 5

stretching factor ak =
zeta distribution

0.0000000E+00

0.5458827

1.136768

1 776364

2 468679

3 218074

4 029237

4 907267

5 857677

6 886435

8 000000

x,wws values

0.1324447

0.6892467

1.291948

1.944339

2.650504

3.414877

4.242265

5.137857

6.107284

7.156616

1.02000

0.2675354

0.8354774

1.450235

2.115666

2.835959

3.615623

4.459562

5.373065

6.361872

7.432198

0.4053355

0.9846325

1 611686

2 290430

3 025122

3 820383

4 681198

5 612971

6 621557

7 713285

1 0.000 0.000 2 0.005 0.000 3 0.010 0.000
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-4

7-,

i0

13

16

19

22

25

28

31

34

37

40

43

46

49

52

55

58

61

64

67

70

73

76

79

82

85

0 015

0 030

0 045

0 060

0 075

0 090

0 093

0 096

0 099

0 102

0 105

0 108

0 iii

0 114

0 117

0 120

0 135

0 150

0 165

0 180

0 195

0 210

0 225

0 240

0 255

0 270

0 285

0 300

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

5

8

Ii

14

17

20

23

26

29

32

35

38

41

44

47

5O

53

56

59

62

65

68

71

74

77

80

83
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0 020

0 035

0 050

0 065

0 080

0 091

0 094

0 097

0 i00

0 103

0 106

0 109

0 112

0 115

0 118

0.125

0.140

0 155

0 170

0 185

0 200

0 215

0 230

0 245

0 260

0 275

0 290

0 000
0 000

0 000
0 000
0 000
0 000
0.000

0.000
0.000
0 000

0 000
0 000

0 000
0 000
0 000
0 000
0 000

0 000
0 000
0 000

0 000
0 000
0 000
0 000

0 000
0 000
0 000

6

9

12

15

18
21

24

27

30

33

36

39

42

45

48

51

54

57

60

63

66

69

72

75

78

81

84

0 025

0 040

0 055

0 070

0 085

0 092

0 095

0 098

0 i01

0 104

0 107

0 ii0

0 113

0 116

0 119

0 130

0.145

0.160

0 175

0 190

0 205

0 220

0 235

0 250

0 265

0 280

0 295

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0.000

0.000

0.000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000

0 000
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Case 4: Program Notes

Program

File name is sym_bl/case4.f

Library routines are in lib/blk.f and lib/lib.f

To run Program

Edit lib/com and set [nx]=118, [ny]=3, [nz]=41

Recompile lib/blk.f with f77 -c blk.f

Compile sym_bl/case4.f with f77 -o case4 case4.f ../lib/blk.o ../lib/lib.o

Run with : case4

Inputs

[pfs], [tfs], [amach], [reflen] in S/R inputs; [iunit]=0 (US units)

[iwall]=0; Adiabatic Wall

[nppi] and [ip] refer to i locations where profile output is required

[x(i),i=l,nx] distribution in S/R rinvis

[hl], [h2], [ue], [vey] are calculated in S/R rinvis for an ellipsoid at 0_=6° by
analytical formula

Variations

[y] distribution and [vey] values depending on windward line or leeward line (see
S/R rinvis).

Different x distributions and nxlim values

[nxlim] to be input < [nx] to avoid rear stagnation point

[x(1)] set to 0.0005 for windward symmetry solution and to -0.0005 for leeward
symmetry solution to get a more accurate solution near the forward stagnation
point.

Coefficients in S/R edgesym at i=2 calculated based on forward differencing of
[ue], [hl], [h2] and [ak] to avoid differencing across the singularity point.

Program Description

This program calculates solution profiles at [nxlim] stations (at y=0 or y=l) of an
ellipsoid at angle of attack. The inputs to the program and boundary conditions
are provided in S/R inputs. BL edge conditions are specified in S/R rinvis. The
non-dimensional free-stream velocity [ue(i,1),i=l,nx] and the crossflow velocity
gradient [vey(i),i=l,nx] are calculated analytically. The metrics [hl(i,1)] and
[h2(i,1)] are defined in S/R rinvis. Calculation of reference quantities are done
in S/R ref in lib/blk.f.

The edge coefficients corresponding to the 3D stagnation point at i=1 are
evaluated in S/R edgestg (see Table 3). The edge coefficients corresponding
the symmetry flow downstream are evaluated in S/R edgesym, which are from
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Table 4 with the edge cross flow velocity gradient [dvy(i)] as given in S/R rinvis.
The x differencing flag [ix] is now set to 1 here which means that streamwise

gradients will be calculated. The F, G, F', G', H, H' profiles at i-1 and i-2 loca-
tions are stored at the end of iteration convergence in S/R nexstep.

The solution diverges as separation is approached. This occurs at i=111
for windward symmetry line and i=100 for leeward symmetry line.

The physical quantities of BL thickness [deltax], momentum thickness [the-
tax], displacement thickness [dispx], skin friction coefficient [cfxi] as well as
profiles at selected stations are output in S/R phys.

Results

fort.2

fort.3

fort.4

fort.1

has output of input data and reference conditions

has profile output (S/R phys)

wall and integrated quantities (S/R phys)

output for plots
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Windwardsym. line flow Ellipsoid alpha=6, case4

Physical quantities are in U.S. units

Wall condition : Adiabatic wall

Inputs

nx, ny, nz = 118, 3, 41
zmax = 8.00

reflen = 2.000000

pfs = 2116.000
tfs = 520.00

mach no = 0.050

trs = 1.82

ufs = 55.88

ref Re no per unit length =

fs Re no per unit length =
fs sonic vel = 1117.70

amuinf = 0.3745793E-06

amuref = 0.2780940E-09

rofs = 0.2371347E-02

hrefs = 0.3123122E+07

f-edge = 0.990000

0.4765381E+09

0.3537900E+06

ORIGINAL PAGE IS

OF POOR QUALITY

nxlim = Iii

iwall= 0

iunit= 0

ak= 1.070000

epsf= 0.5000000E-04

epsh= 0.5000000E-04
iord = 5

crs= 1.000000

stretching factor ak =
zeta distribution

1.07000

0.0000000E+00

0.1779239

0.4111452

0.7168503

1.117567

1.642824

2.331329

3.233817

4.416793

5.967432

8.000000

0.4007342E-01

0.2304517

0.4799983

0.8071027

1 235870

1 797895

2 534595

3 500257

4 766041

6 425223

0.8295202E-01

0.2866566

0.5536718

0.9036732

1 362454

1 963820

2 752090

3 785347

5 139735

6 915060

0.1288323

0.3467962

0.6325016

1 007004

1 497898

2 141361

2 984808

4 090393

5 539589

7 439186

i x hi h2 ue i x hi h2 ue

1 0.0000 5.1826 0.0000 0.0000

3 0.0020 2.9607 0.0351 0.1803

5 0.0040 2.2044 0.0496 0.3147

2 0.0010 4.0716 0.0248 0.0757

4 0.0030 2.4822 0.0430 0.2554

6 0.0050 2.0195 0.0554 0.3637
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7 0 0060 1.8861 0 0607 0 4055

9 0

ii 0

13 0

15 0

17 0

19 0

21 0

23 0

25 0

27 0

29 0

31 0

33 0

35 0

37 0

39 0

41 0

43 0

45 0

47 0

49 0

51 0

53 0

55 0

57 0

59 0

61 0

63 0

65 0

67 0

69 0

71 0

73 0

75 0

77 0

79 0

81 0

83 0

85 0

87 0

89 0

91 0

93 0

95 0

97 0

0080 1.7048 0

0100 1.5861 0

0120 1.5018 0

0140 1.4385 0

0160 1.3892 0

0180 1.3496 0

0200 1.3171 0

0400 1.1595 0

0600 1.1021 0

0800 1.0723 0

i000 1.0541 0

1200 1.0419 0

1400 1.0331 0

1600 1.0265 0

1800 1.0215 0

2000 1.0174 0

2200 1.0142 0

2400 1 0115 0

0700 0 4735

0781 0 5273

0855 0 5712

0923 0 6080

0985 0 6393

1044 0 6664

II00 0 6902

1539 0 8293

1865 0 8943

2131 0 9330

2356 0 9590

2552 0 9779

2725 0 9924

2879 1 0039

3017 1.0134

3142 1 0214

3253 1 0282

3354 1 0341

2600 1

2800 1

3000 1

3200 1

3400 1

3600 1

3800 1

4000 1

4200 1.0008 0

4400 1.0005 0

4600 1 0002 0

4800 1 0001 0

5000 1 0000 0

0093 0.3445 1

0075 0.3526 1

0059 0.3599 1

0046 0.3664 1

0036 0.3721 1

0027 0 3770 1

0019 0 3812 1

0013 0 3848 1

3876 1

3899 1

3914 1

3924 1

3927 1

0394

0440

0482

0520

0555

0586

0616

0643

0669

0693

0715

0736

0756

5200 1

5400 1

5600 1

5800 1

6000 1

6200 1

6400 1

6600 1

6800 1

7000 1

7200 1

7400 1

7600 1

7800 1

0001 0

0002 0

0005 0

0008 0

0013 0

0019 0

0027 0

0036 0

0046 0

0059 0

0075 0

0093 0

0115 0

0142 0

3924 1.0775

3914 1.0793

3899 1.0810

3876 1.0826

3848 1.0841

3812 1.0856

3770 1.0869

3720 1.0882

3664 1.0893

3599 1 0904

3526 1 0913

3445 1 0921

3354 1 0926

3253 1 0930

8 0.0070 1 7848 0 0655 0 4417

I0 0.0090 1

12 0.0110 1

14 0.0130 1

16 0.0150 1

18 0.0170 1

20 0.0190 1

22 0 0300 1

24 0 0500 1

26 0 0700 1

28 0 0900 1

30 0 ii00 1

32 0 1300 1

34 0 1500 1

36 0 1700 1

38 0 1900 1

40 0 2100 1

42 0 2300 1

44 0 2500 1

46 0 2700 1

48 0 2900 1

50 0 3100 1

52 0 3300 1

54 0 3500 1

6399 0

5407 0

4681 0

4125 0

3684 0

3326 0

2143 0

1254 0

0851 0

0622 0

0474 0

0371 0

0296 0

0238 0

0193 0

0157 0

0128 0

0104 0

0084 0

0067 0

0053 0_3632 !

0041 0.3693 1

0031 0.3746 1

56 0

58 0

60 0

62 0

64 0

66 0

68 0

70 0

72 0

74 0

76 0

78 0

80 0

3700 1.0023 0.3792 1

3900 1.0016 0.3831 1

4100 1.0010 0.3863 1

4300 1.0006 0.3888 1

4500 1.0003 0.3907 1

4700 1 0001 0.3920 1

4900 1

5100 1

5300 1

5500 1

5700 1

5900 1

6100 1

0000 0.3926 1

0000 0.3926 1

0001 0.3920 1

0003 0 3907 1

0006 0 3888 1

0010 0 3863 1

0016 0 3831 1

0742 0 5018

0819 0 5503

0890 0 5904

0955 0 6242

1015 0 6534

1072 0 6787

1340 0 7756

1712 0 8666

2004 0 9158

2248 0 9471

2457 0 9691

2641 0 9856

2804 0 9985

2950 1 0089

3081 1 0176

3199 1 0249

3305 1 0313

3401 1 0368

3487 1.0418

3564 1 0462

0501

0538

0571

0601

0630

0656

0681

0704

0726

0746

0766

0784

0802

0818

0834

0849

82 0

84 0

86 0

88 0

90 0

92 0

94 0

96 0

98 0.7900 1

6300 1 0023 0

6500 1.0031 0

6700 1 0041 0

6900 1 0053 0

7100 1 0067 0

7300 1 0084 0

7500 1 0104 0

7700 1 0128 0

0157 0

3792 1.0863

3746 1.0876

3693 1.0888

3632 1.0899

3564 1.0908

3487 1.0917

3401 1.0924

3305 1 0928

3199 1 0931

99 0

i01 0

103 0

105 0

107 0

109 0

iii 0

8000 1

8200 1

8400 1

8600 1

8800 1

9000 1

9200 1

0174 0

0215 0

0265 0

0331 0

0419 0

0541 0

0723 0

3142 1

3017 1

2879 1

2725 1

2552 1

2356 1

2131 1

0930 I00 0.8100 1

0927 102 0.8300 1

0917 104 0.8500 1

0900 106 0.8700 1

0870 108 0.8900 1

0819 ii0 0.9100 1

0733

0193 0

0238 0

0296 0

0371 0

0474 0

0622 0

3081 1

2950 1

2804 1

2641 1

2457 1

2248 1

0929

0923

0910

0887

0848

0782
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Case 5: Program Notes

Program

File name is sym_bl/case5.f

Library routines are in lib/blk.f and lib/lib.f

To run Program

Edit lib/com and set [nx]=99, [ny]=3, [nz]=81

Recompile lib/blk.f with f77 -c blk.f

Compile sym_bl/case5.f with f77 -o case5 case5.f ../lib/blk.o ../lib/lib.o

Run with : case5

Inputs

[pfs], [tfs], [amach], [reflen] in S/R inputs; [iunit]=0 (US units)

[iwall]=0; Adiabatic Wall; [reflen] depends on the Reynolds number

[nppi] and [ip] refer to i locations where profile output is required

[xb], [zb] (cartesian coordinates of airfoil section) are read in S/R rinvis from
Navier-Stokes run data; also read in are the pressure coefficient values and
skin friction results from N-S run.

The x distribution is calculated from [xb] and [zb] as arc length

[ue] and [ve] calculated from pressure coefficient values; [hl] and [h2] are unity.

Conditions at i=1 (attachment point) are obtained by quadratic extrapolation.

Variations

nxlim=44 for refs=5,000 run (input file is sym_bl/case5_datl)

nxlim=98 for refs=1,000,000 run (input file is sym_bl/case5_dat2)

Program Description

This program calculates solution profiles at [nxlim] stations for flow past an air-
foil in subsonic flow. The inputs to the program and boundary conditions are
provided in S/R inputs. BL edge conditions are specified in S/R rinvis. Calcula-
tion of reference quantities are done in S/R ref in lib/blk.f. The edge conditions
are as obtained from a Navier-Stokes calculation.

The edge coefficients corresponding to the 2D stagnation point at i=1 are
evaluated in S/R edgestg (see Table 3). The edge coefficients corresponding
the 2D flow downstream are evaluated in S/R edgesym, which are from Table 4

with the edge cross flow velocity gradient [dvy(i)] and cross-flow gradients set to
zero.

The solution diverges as separation is approached. This occurs at i=98 for
for the higher Re number case and i=44 for the lower Re number case. Note

that the x distribution in the two cases are not the same. Laminar separation
for the lower Re number case occurs farther from the leading edge.
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Results

The physical quantities of BL thickness [deltax], momentum thickness [thetax],
displacement thickness [dispx], skin friction coefficient [cfxi] as well as profiles
at selected stations are output in S/R phys.

fort.2 has output of input data and reference conditions

fort.3 has profile output (S/R phys)

fort.4 wall and integrated quantities (S/R phys)



file sym bl/fort.2_case5:
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Partiallisting

Flow past Airfoil Section, case5

Physical quantities are in U.S. units

Wall condition : Adiabatic wall

Inputs

nx, ny, nz = 99, 3, 81
zmax = i0.00

reflen = 0.2826600

pfs = 2116.000
tfs = 520.00

mach no = 0.500

trs = 182.00

ufs = 558.85

ref Re no per unit length =

fs Re no per unit length =
fs sonic vel = 1117.70

amuinf = 0.3745792e-06

amuref = 0.1464415e-06

rofs = 0.2371347e-02

hrefs = 0.3123120e+07

f-edge = 0.990000

0.9049514e+07

0.3537902e+07

ORIGINAL PAGE IS

OF POOR QUALITY

nxlim = 68

iwall= 0

iunit = 0

ak = 1.050000

epsf = 0.5000000e-04

epsh = 0.5000000e-04
iord = 5

crs= 0.

stretching factor
zeta distribution

.

0. 4437821e-01

0 9832020e-01

0 1638870

0 2435838

0 3404558

0 4582043

0 6013282

0 7752963

0 9867554

1.243785

1. 556207

1. 935957

2.397545

ak = 1.05000

i029627e-01

5689340e-01

1135325

1823776

2660593

3677748

4914108

6416910

8243573

1.046389

1.316271

1.644313

2.043051

2.527719

0 2110735e-01

0 7003433e-01

0 1295053

0 2017927

0 2896585

0 3964598

0.5262775

0.6840717

0.8758713

1.109005

1.392381

1.736825

2.155499

2.664401

0.3245900e-01

0.8383231e-01

0.1462769

0.2221786

0.3144377

0.4265791

0.5628877

0.7285714

0.9299613

1.174752

1.472296

1.833962

2.273571

2.807917



2 958609
3 640585
4 469531
5 477119
6 701850
8 190516
i0.00000

3 116836
3 832910
4 703303
5 761271
7 047238
8 610338
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3 282973

4 034852

4 948764

6 059630

7 409895

9 051150
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3 457418

4 246890

5 206499

6 372909

7 790687

9 514004

i x hi h2 ue i x hi h2 ue

i 0 0000 1.0000 i 0000 0 0000

3 0

5 0

7 0

9 0

Ii 0

13 0

15 0

17 0

19 0

21 0

23 0

25 0

27 0

29 0

0015 1.0000 1

0036 1.0000 1

0058 1 0000 1

0082 1 0000 1

0110 1 0000 1

0141 1 0000 1

0177 1 0000 1

0218 1 0000 1

0265 1 0000 1

0319 1 0000 1

0381 1 0000 1
AAC_v_oL 1 0000 i

0533 1 0000 1

0625 1 0000 1

31 0.0730 1

33 0.0848 1

35 0.0982 1

37 0.1133 1

39 0 1303 1

41 0 1494 1

43 0 1709 1

45 0 1949 1

47 0 2210 1

49 0 2478 1

51 0 2748 1

53 0 3021 1

55 0 3294 1

57 0 3566 1

59 0 3838 1

61 0.4107 1

63 0.4373 1

65 0.4635 1

67 0.4894 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 0 1095

0000 0 2605

0000 0 4076

0000 0 5480

0000 0 6769

0000 0 7889

0000 0 8826

0000 0 9591

0000 1 0285

0000 1.0692

0000 1.1116

0000 1.1409

0000 1.1646

0000 1.1830

0000 1.1969

0000 1.2072

0000 1.2145

0000 1.2192

0000 1 2216

0000 1 2219

0000 1 2201

0000 1 2165

0000 1 2111

0000 1 2046

0000 1 1973

0000 1.1894

0000 1.1812

0000 1.1728

0000 1.1645

0000 1.1568

0000 1.1502

0000 1.1433

0000 1.1325

2 0 0005 1 0000 1 0000 0.0361

4 0

6 0

8 0

i0 0

12 0

14 0

16 0

18 0
20 0

22 0

24 0

26 0

28 0

30 0

32 0

34 0

36 0

38 0

40 0

42 0

44 0

46 0

48 0

50 0

52 0

54 0

56 0

58 0

60 0

62 0

64 0

66 0

68 0

0025 1

0046 1

0070 1

0096 1

0125 1

0158 1

0196 1

0241 1

0291 1

0349 1

0416 1

0491 1

0578 1

0676 1

0787 1

0913 1

1055 1

1216 1

1396 1

1599 1

1826 1

2078 1

2343 1

2613 1

2884 1

3157 1

3430 1

3702 1

3972 1

4240 1

4504 1

4765 1

5021 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 1

0000 0.1852

0000 0.3347

0000 0 4789

0000 0 6143

0000 0 7352

0000 0 8380

0000 0 9219

0000 0 9974

0000 1 0503

0000 1 0911

0000 1 1274

0000 1 1534

0000 1 1744

0000 1 1904

0000 1 2025

0000 1 2112

0000 1 2172

0000 1.2207

0000 1.2220

0000 1.2212

0000 1.2185

0000 1.2139

0000 1 2079

0000 1 2010

0000 1 1934

0000 1 1853

0000 1 1770

0000 1 1686

0000 1 1605

0000 1 1534

0000 1.1470

0000 1.1386

0000 1.1254
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Y

0 00600

0 01200

0 01800

0 03000

0 05400

0 07800

0 10200

0 12600

0 16500

0 22500

0 28500

0 34500

0 40500

stations

0.18750

0.63750

1.08750

0 00700

0 01300

0 01900

0 03400

0 058OO

0 08200

0 10600

0 13000

0 17500

0 23500

0 29500

0 35500

0.26250

0.71250

1.16250
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0 00800 0

0 01400 0

0 02000

0 03800

0 06200

0 08600

0 11000

0 13500

0 18500

0 24500

0 30500

0 36500

0.33750

0.78750

1.23750

00900

01500

0 02100

0 04200

0 06600

0 09000

0 11400

0 14100

0 19500

0 25500

0 31500

0 37500

0.41250

0.86250

0 01000

0 01600

0 02300

0 04600

0 07000

0 09400

0 11800

0 14800

0 20500

0 26500

0 32500

0 38500

0.48750

0.93750

0.01100

0.01700

0.02600

0.05000

0.07400

0.09800

0.12200

0.15600

0.21500

0.27500

0.33500

0.39500

0.56250

1.01250
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Case 6: Program Notes

Program

File name is inf_bl/case6.f

Library routines are in lib/blk.f and lib/lib.f

To run Program

Edit lib/com and set [nx]=101, [ny]=l, [nz]=41

Recompile lib/blk.f with f77 -c blk.f

Compile inf_bl/case6.f with f77 -o case6 case6.f ../lib/blk.o ../lib/lib.o

Run with : case6

Inputs

The inviscid flow on the swept ellipse is calculated by the program ellipse.f.
This program generates the cross section and edge velocity (Ue,2D) for a swept
ellipse at an angle of attack. The inputs to this program are the ellipse fineness
ratio, angle of attack, sweep angle and the grid distribution. This program is
run with,

f77-o ellipse ellipse.f ../lib/lib.o ;ellipse

The inviscid edge conditions are output to fort.20_case6

The inputs to the BL program are: [amach], [pfs], [tfs], [reflen] and the sweep
angle; [iunit] = [iwall] = 0

Program Description

This program calculates solution profiles at [nxlim] stations for flow past a swept
ellipse in subsonic flow.

The inputs to the program and boundary conditions are provided in S/R inputs.
BL edge conditions are specified in S/R rinvis (read in from file fort.20_case6).

The edge coefficients corresponding to an infinite swept attachment line at
i=1 are evaluated in S/R edgeatt. The edge coefficients corresponding the
infinite swept wing flow downstream are evaluated in S/R edgeinf.

Results

The physical quantities of BL thickness [deltax], momentum thickness [thetax],
displacement thickness [dispx], skin friction coefficient [cfxi] as well as profiles
at selected stations are output in S/R phys.
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Swept Elliptical Cylinder Flow

Physical quantities are in U.S. units

Wall condition : Adiabatic wall

Inputs

nx, ny, nz = i01, I, 41
zmax = 8.00

reflen = 1.000000

pfs = 2116.000
tfs = 520.00

mach no = 0.I00

trs= 7.28

ufs = 111.77

ref Re no per unit length =

fs Re no per unit length =
fs sonic vel = 1117.70

amuinf = 0.3745792e-06

amuref = 0.2165752e-08

rofs = 0.2371347e-02

hrefs = 0.3123120e+07

f-edge = 0.990000

0.1223800e+09

0.7075803e+06

ORIGINAL PAGE IS

OF POOR QUALITY

nxlim= 79

iwall= 0

iunit= 0

ak= 1.020000

epsf= 0.5000000e-04

epsh= 0.5000000e-04

stretching factor ak =
zeta distribution

1.02000

.

0.5458910

1.136781

1 776379

2 468700

3 218091

4 029256

4 907286

5 857694

6 886445

8 000000

0.1324464

0.6892554

1 291963

1 944353

2 650521

3 414900

4 242288

5 137878

6.107295

7.156621

0.2675414

0.8354862

1.450248

2.115686

2.835977

3.615643

4.459579

5.373082

6.361886

7.432198

i x ue ve i x ue ve

1 0.0000 0.0000 0.6428

4 0.0019 0.2120 0.6428

7 0.0037 0.4539 0.6428

I0 0.0053 0.7044 0.6428

13 0.0070 0.9319 0.6428

2 0.0007 0.0667 0.6428

5 0.0025 0.2901 0.6428

8 0.0042 0.5379 0.6428

II 0.0059 0.7844 0.6428

14 0.0075 0.9975 0.6428

0.4053386

0.9846427

1 611700

2 290447

3 025143

3 820403

4 681217

5 612990

6 621570

7 713290

i x ue ve

3 0.0013 0.1374 0.6428

6 0.0031 0.3710 0.6428

9 0.0048 0.6219 0.6428

12 0.0064 0.8606 0.6428

15 0.0081 1.0570 0.6428



i x ue ve i x ue ve i x ue ve

16 0.0086 1 Ii01 0.6428
19 0.0104 1
22 0.0124 1
25 0.0146 1
28 0.0170 1
31 0.0196 1
34 0.0225 1
37 0.0257 1
40 0 0292 1
43 0 0330 1
46 0 0371 1
49 0 0415 1

2317 0.6428
3053 0.6428
3449 0.6428
3629 0.6428
3679 0.6428
3655 0 6428
3590 0 6428
3504 0 6428
3408 0 6428
3309 0 6428
3211 0 6428

52 0
55 0
58 0
61 0
64 0
67 0
70 0
73 0
76 0

0462 1.3116 0
0512 1.3025 0
0564 1.2938 0
0620 1.2856 0
0679 1.2778 0
0741 1.2705 0
0805 1.2636 0
0873 1.2570 0
0943 1.2508 0

6428
6428
6428
6428
6428
6428
6428
6428
6428

17 0 0092 1.1567 0 6428
20 0
23 0
26 0
29 0
32 0
35 0
38 0
41 0
44 0
47 0
5O 0
53 0
56 0
59 0
62 0
65 0
68 0
71 0
74 0
77 0

0111 1.2609 0
0131 1.3216 0
0153 1.3528 0
0178 1.3657 0
0206 1.3677 0
0236 1.3637 0
0269 1.3563 0
0305 1.3473 0
0344 1 3375 0
0385 1 3276 0
0430 1 3179 0
0478 1 3085 0
0529 1 2995 0
0583 1 2910 0
0640 1 2830 0
0699 1 2753 0
0762 1 2681 0
0827 1 2613 0
0896 1 2549 0
0967 1 2488 0

6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428

18 0 0098 1.1971 0 6428
21 0
24 0
27 0
30 0
33 0
36 0
39 0
42 0

0117 1.2853 0
0138 1.3347 0
0161 1.3587 0
0187 1.3673 0
0215 1.3669 0
0246 1.3615 0
0280 1.3534 0
0317 1.3441 0

45 0.0357 1.3342 0
48 0.0400 1.3244 0
51 0.0446 1.3147 0
54 0.0495 1.3055 0
57 0.0547 1.2967 0
60 0 0601 1.2883 0
63 0 0659 1.2804 0
66 0 0720 1.2729 0
69 0 0783 1.2658 0
72 0 0850 1.2591 0
75 0 0919 1.2528 0
78 0.0991 1.2468 0

6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428
6428



-211-

Case 7: Program Notes

Program

File name is att_bl/case7.f

Library routines are in lib/blk.f and lib/lib.f

To run Program

Edit lib/com and set [nx]=l, [ny]=20, [nz]=41

Recompile lib/blk.f with f77 -c blk.f

Compile att_bl/case7.f with f77 -o case7 case7.f ../lib/lib.o ../lib/blk.o

Run with • case7

To generate the inviscid edge conditions, compile att_bl/cyl.f with

f77 -o cyl cyl.f ../lib/lib.o

and run with • cyl

The input data for cyi.f is in cp.dat (Euier resuits); the output from cyi.f is
fort.20_case7

Inputs

The inviscid inputs are in file cp.dat. They comprise of the cartesian coordi-
nates of the inviscid grid (x',y',z'), the cartesian components of velocity (u',v',w')

and the pressure coefficient, Cp.

The inputs to the BL program are the edge velocity along the attachment line
and the streamwise velocity gradient. They are calculated by the program cyl.f;
Other inputs [pfs], [tfs], [amach] and [reflen] are in S/R inputs; metric

coefficients are input in S/R rinvis.

Program Description

The program cyl.f reads in the inviscid grid and cartesian components of velo-
city. The velocities are transformed to curvilinear coordinates. The first five
stations near to the symmetry plane are skipped to avoid the subsonic region in
the inviscid calculation. The velocity gradient in the streamwise direction is then

calculated. Results are output to a file called fort.20_case7.

The program case7.f obtains the BL solution on the swept cylinder attach-
ment line. The edge conditions from fort.20_case7 are read in. The first station
on the attachment line is calculated by solving the infinite attachment line equa-
tions. The edge conditions for this case are generated in S/R edgeinf. The

solution along the attachment line is then calculated by marching in the j direc-
tion. The edge conditions for the general attachment line equations are gen-
erated in S/R edgeatt. A 2-point backward differencing scheme is used to

evaluate the y gradients.
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Att line flow swept cyl at amach=3.5,

Physical quantities are in U.S. units

case7

Wall condition : Adiabatic wall

Inputs

nx, ny, nz = !, 20, 41

zmax = 6.00

reflen = 0.8333334e-01

pfs = 188.7800

tfs = 172.75

mach no = 3.500

trs= 2962.66

ufs = 2254.76

ref Re no per unit length =

fs Re no per unit length =

fs sonic vel = 644.22

amuinf = 0.1387936e-06

amuref = 0.i157947e-05

rofs = 0.6368258e-03

hrefs = 0.1037537e+07

f-edge = 0.990000

0.1240029e+07

0.I034549e+08

ORIGINAL PAGE IS
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nylim = 20
iwall= 0

iunit= 0

ak = 1.030000

epsf= 0.5000000e-04

epsh = 0.5000000e-04

iord= 5

crs= 0.

gedge= 0.9900000

stretching factor ak=

zeta distribution

1.03000

O.

0.3329091

0.7076012

1.129320

1 603969

2 138190

2 739461

3 416197

4 177869

5 035137

6 000000

J y (j)

0.7957422e-01

0.4224705

0.8084035

1 242774

1 731662

2 281910

2 901219

3 598257

4 382779

5 265765

ve

0.1615357

0.5147189

0.9122299

1 359632

1 863187

2 429942

3 067830

3 785779

4 593837

5 503313

fe

i 0.291

2 0.375

3 O.458

6670e-01

0000e-01

3330e-01

0.8124530

0.8226570

0.8300120

1.038030

0.9848440

0.9534300

0.2459560

0.6097348

1 019171

1 479995

1 998657

2 582415

3 239439

3 978926

4 811226

5 747986



4

5

6

7

8
9

i0

ii

12

13

14

15

16

17

18

19

2O

0 5416670e-01

0 6250000e-01

0 7500000e-01

0 9166670e-01

0 1125000

0 1375000

0 1625000

0 1875000

0 2125000

0 2375000

0 2625000

0 2875000

0 3125000

0 3375000

0 3625000

0 3875000

0 4125000
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0 8350630

0 8385820

0 8415280

0 8446180

0 8480790

0 8515590

0 8547280

0.8573130

0.8592110

0.8604830

0 8613040

0 8618300

0 8621980

0 8625010

0 8627780

0 8630380

0 8632890

0 9341240

0 9148030

0 9011600

0 8867070

0 8789700

0 8703080

0 8593810

0 8510940

0 8453430

0 8419720

0 8389780

0 8358840

0 8327700

0 8301450

0 8258100

0 8239340

0 8202360

ORIGINAL PAGE IS

OF POOR QUALITY
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Case 8: Program Notes

Program

File name is 3d_bl/case8.f

Library routines are in lib/blk.f and lib/lib.f

To run Program

Edit lib/corn and set [nx]=29, [ny]=l 1, [nz]=41

Recompile lib/blk.f with f77 -c blk.f

Compile 3d_bl/caseS.f with f77 -o case8 case8.f ../lib/lib.o ../lib/blk.o

Run with : case8

Inputs

The inviscid inputs are generated in the program itself in S/R rinvis. The initial
plane of solution and the side boundary plane of solution are read into the pro-
gram in S/R initial and S/R rside respectively.

The initial profile at i=1, j=l is generated by running the program sim_bl/case8.f
corresponding to similarity profiles at the flat plate singularity point. This pro-
gram is run by,

f77 -o case8 case8.f ../lib/lib.o ../lib/blk.o ; case8

The solution profile is output to file sim_bl/fort.11_case8. The initial profiles at
other j stations on i=1 are obtained by copying the same profile.

The side boundary solution profiles (at j=l) are generated by running the pro-
gram sym_bl/case8.f. This program is run by,

f77 -o case8 case8.f ../lib/lib.o ../lib/blk.o ; case8

Input for this run is the file sim_bl/fort.11_case8. The output is to the file
sym_bl/fort.11_case8 and this corresponds to [nxlim-1] number of solution
profiles on the symmetry line.

Other inputs corresponding to free-stream conditions are as given in S/R inputs

Program Description

This program solves the 3D BL equations for flow past a cylinder on a flat plate.
The initial profile is read from the similarity solution and the side boundary
profiles from the symmetry line solution. The Ti direction sweep can be done
using a 'L' scheme or a 'Z' scheme as specified in S/R edge3d. The last point
at j=jm always uses a 'L' scheme.
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Partiallisting of file 3d_bl/fort.2_case8

3d flow, cyl on fp test case #8

Physical quantities are in S.I. units

Wall condition : Adiabatic wall

Input s

nx, ny, nz = 29, ii, 41
zmax = 8.00

reflen = 0.6100000e-01

pfs = 101325.5
tfs= 288.15

mach no = 0.090

trs = 3.24

ufs = 30.50

ref Re no per unit length =

fs Re no per unit length =
fs sonic vel = 340.30

amuinf = 0.1789923e-04

amuref = 0.7490627e-07

rofs = 0.1224979e+01

hrefs = 0.2895064e+06

f-edge = 0.990000

0.4987959e+09

0.2087405e+07

nxlim= 29

nylim= ii
iwall= 0

iunit= 1

ak= 1.020000

epsf= 0.1000000e-04

epsh= 0.I000000e-04
iord= 5

stretching factor ak =
zeta distribution

1.02000

.

0.5458910

1.136781

1.776379

2.468700

3.218091

4.029256

4.907286

5.857694

6.886445

8.000000

0.1324464

0.6892554

1.291963

1 944353

2 650521

3 414900

4 242288

5 137878

6 107295

7 156621

0.2675414

0.8354862

1.450248

2.115686

2.835977

3.615643

4.459579

5.373082

6.361886

7.432198

x stations

ORIGINAL PAGE IS
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0.4053386

0.9846427

1.611700

2 290447

3 025143

3 820403

4 681217

5 612990

6 621570

7 713290
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0.00000 0.i0000 0.20000 0.30000 0.40000 0.50000

0.60000 0.70000 0.80000 0.90000 1.00000 i.i0000
1.20000 1.30000 1.40000 1.50000 1.60000 1.70000

1.80000 1.90000 2.00000 2.10000 2.20000 2.30000

2.40000 2.50000 2.60000 2.70000 2.80000

0.I0000 0.20000 0.30000 0.40000 0.50000

0.70000 0.80000 0.90000 1.00000

y stations

0.00000

0.60000

ORIGINAL PAGE IS
OF POOR QUALITY
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Case 9: Program Notes

Program

File name is 3d_bl/case9.f

Library routines are in lib/blk.f and lib/lib.f

To run Program

Edit lib/com and set [nx]=77, [ny]=38, [nz]=41

Edit lib/comint and set [ii]=53, [ji]=36

Recompile lib/blk.f with f77 -c blk.f

The interface program int_fus/case9.f is run with,

f77 -o case9 case9.f ../lib/lib.o ../lib/pack.o

The 3D BL solution is obtained with,

3d_bl/case9.f with f77 -o case9 case9.f ../lib/lib.o ../lib/blk.o ; case9

Program Description

The inviscid inputs are obtained by running the Hess code. The Hess code out-
put data is in file int_fus/cp.dat and consists of the Cartesian coordinates, the

Cartesian components of velocity and Cp corresponding to the panel centroids.

The interface program int_fus/case9.f reads the Hess output in S/R rinvis. The
boundary layer grid is generated analytically with a circumferential distribution
same as that of the inviscid grid (S/R blgrd). Two more points corresponding to
the windward and leeward lines of symmetry are added resulting in, [ny] = [ji]+2
= 38.

The Cp values are interpolated to the BL grid in the interface program
using cubic splines (lib/pack.o contains the spline routine object code). Subse-
quently, the surface Euler equations are solved to generate the BL edge veloci-

ties (S/R interp). The edge conditions are output to file int_fus/fort.30_case9.

The symmetry line BL solution program sym_bl/case9.f is run next similar to
Case 4. The inviscid edge conditions required here can be exactly generated
or read in numerical form from the interface program. The BL solution profiles

are output to sym_bl/fort.11_case9.

The 3D BL solution program reads the edge conditions (exact or numerical) and
the symmetry plane solution. The T1direction sweep can be of the 'L' type or
the 'Z' type as set in S/R edge3d. The q sweep is restricted to ny=37 i.e. one
point short of the leeward symmetry line. The j=37 point is always solved by an
'L' scheme.

Solution profiles and BL parameters (tx, Cf,x, Cf,y)at selected (i,j) stations are
output in S/R phys.



Partial listing of file
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3d bl/fort.2 case9

3d flow, ellipsoid alpha=3 deg Case #9

Physical quantities are in U.S. units

wall condition : Adiabatic wall

Inputs

nx, ny, nz = 77, 38, 41
zmax = 8.00

reflen = 2.000000

pfs = 2116.000
tfs = 520.00

mach no = 0.050

trs= 1.82

ufs = 55.88

ref Re no per unit length =

fs Re no per unit length =
fs sonic vel = 1117.70

amuinf = 0.3745793E-06

amuref = 0.2780940E-09

rofs = 0.2371347E-02

hrefs = 0.3123122E+07

f-edge = 0.990000

0.4765381E+09

0.3537900E+06

nxlim= 76

nylim = 37
iwall= 0

iunit = 0

ak = 1.000000

epsf = 0.1000000E-04

epsh= 0.1000000E-04
iord= 5

stretching factor ak =
zeta distribution

1.00000

0. 0000000E+00

0.9999999

2.000000

3.000000

3.999999

4.999999

5.999999

6.999999

7.999999

0.2000000

1 200000

2 200000

3 200000

4 199999

5 199999

6 199999

7 199999

0.4000000

1 400000

2 400000

3 400000

4 400000

5 400000

6 400000

7 399999

x stations

0.6000000

1.600000

2.599999

3.599999

4.599999

5.599999

6.599999

7.599999

0.8000000

1.800000

2.800000

3.799999

4.799999

5.799999

6.799999

7.799999

0.00013 0.00100 0.00110 0.00120 0.00130 0.00140



0 O015O
0 00210
0 00270
0 00600
0 01350
0 03600
0 06600
0 09600
0 12600
0 15600
0 18600
0.21600

y stations

0.00000
0.15278
0.31944
0.48611
0.65278
0.81944

0 00160
0 00220
0 00280
0 00700

0 01600

0 04100

0 07100

0 10100

0 13100

0 16100

0 19100

0 22100

0.01389

0.18056

0.34722

0.51389

0.68056

0.84722

-219-

0 00170

0 00230

0 00290

0 00800

0 01900

0 04600

0 07600

0 10600

0 13600

0 16600

0 19600

0.22600

0.04167

0.20833

0.37500

0.54167

0.70833

0.87500

0 00180

0 00240

0 00300

0 00900

0 02250

0 05100

0 08100

0 Iii00

0 14100

0 17100

0 20100

0 23100

0.06944

0.23611

0.40278

0.56944

0.73611

0.90278

0 00190

0 00250

0 00400

0 01000

0 02650

0 05600

0 08600

0 11600

0 14600

0 17600

0 20600

0 09722

0 26389

0 43056

0 59722

0 76389

0 93056

0 00200

0 00260

0 00500

0 01150

0 03100

0 06100

0 09100

0 12100

0 15100

0,18100

021100

0 12500

0 29167

0 45833

0 62500

0 79167

0 95833



Case 10: Program Notes

Program

The interface program:

The input file from the Hess code is int_wng/cp.dat

The corrected inviscid file is int_wng/cp_cor.dat

The corrections are necessary to eliminate the oscillations in the inviscid results

and is done in the program int_wng/cor.f

The interface program is int_wng/casel0.f

The dimension are set as ii=70, ji=15 in lib/comint and nx=100, ny=15 in lib/corn

This program is run using f77 -o case10 casel0.f ../lib/lib.o ../lib/pack.o; case10

lib/pack.f contains the spline interpolation routines

These routines are compiled with f77 -c pack.f

The edge conditions data are output to int_wng/fort.20_casel0

The BL analysis programs

The attachment line program is run from sub-directory att_bl with:

f77 -o case10 casel0.f ../lib/lib.o ../lib/blk.o ; case10

The locally infinite swept wing program is run from sub-directory inf_bl with:

f77 -o case10 case10.f ../lib/lib.o ../lib/blk.o ; case10

The 3d BL wing program is run from sub-directory 3d_bl with:

f77 -o case10 casel0.f ../lib/lib.o ../lib/blk.o ; case10

Inputs

The input files are:

int_wng/cp_cor.dat: this file corresponds to the corrected inviscid data file; it
contains 20 spanwise stations and 89 chordwise stations.

int_wng/ref.dat: this is a file which contains the reference cross sections of the
wing, used in attachment line relocation

Other inputs to the interface program are given in the main routine and are as
follows:

Parameters corresponding to reading the inviscid data; these include number

of stations to be skipped near the root and wing sections and the surface

(upper or lower) to be analysed; details are given in the program by comment
statements

Mach number and error tolerances in velocity used in the surface Euler calcula-
tion

Parameters relating to the relocation iteration of the wing attachment line;
details given in the program
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The BL grid distribution and smoothing factors used in the spline interpolation

For the BL analysis, the inputs are as given in S/R inputs in inf_bl/casel0.f,
att_bl/casel0.f and in 3d_bl/casel0.f; the output from the interface program
int_wng/fort.20_casel0 is the input file for the BL analysis programs.

Program Description

The interface program first reads in the inviscid data in S/R rinv; a number of

sections near the wing root and tip can be skipped if necessary to exclude
regions from the BL calculation. Depending on the surface (upper or lower) of
the wing being analysed, only part of the inviscid data will be read in.

The attachment line is then relocated so as to ensure that the streamwise edge
velocity is zero on this line. This is done in S/R reloc. The inviscid pressures
are interpolated to the BL grid with or without smoothing also in this subroutine.
The surface metrics are then calculated in S/R metrix. The surface Euler equa-
tions are solved in S/R euler and the edge conditions output to a file for BL
analysis.

The BL solution on the wing attachment line is obtained in the program
att_bl/casel0.f. The attachment line equations from Table 5 are solved here
(see S/R edgeatt).

The BL solution for the locally infinite swept boundary near the wing root is
obtained in the program inf_bl/casel0.f (see S/R edgeinf).

The 3D BL solution on the wing is obtained in the program 3d_bl/casel0.f. The
initial and side boundary boundary layer solution profiles are used here from
att_bl/fort.20_casel0 and inf_bl/fort.20_casel0.
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file 3d_bl/fort.2_casel0: partial listing

NACA 0012 straight wing, 20 deg swept, al=2

Physical quantities are in U.S. units

Wall condition : Adiabatic wall

I nput s

nx, ny, nz = i00, 15, 41
zmax = 8.00

reflen = 1.000000

pfs = 2116.000

tfs = 520.00

mach no = 0.500

trs= 182.00

ufs = 558.85

ref Re no per unit length =

fs Re no per unit length =
fs sonic vel = 1117.70

amuinf = 0.3745793E-06

amuref = 0.1464415E-06

rofs = 0.2371347E-02

hrefs = 0.3123124E+07

f-edge = 0.990000

0.9049511E+07

0.3537899E+07

nxlim= 79

nylim= 15
iwall= 0

iunit= 0

ak= 1.000000

epsf= 0.5000000E-04

epsh= 0.5000000E-04
iord= 5

stretching factor ak =
zeta distribution

0.0000000

0. 9999999

2 000000

3 000000

3 999999

4 999999

5 999999

6 999999

7 999999

0 200000

1 200000

2 200000

3 200000

4 199999

5 199999

6 199999

7 199999

x stations

1.00000

0.400000

1 400000

2 400000

3 400000

4 400000

5 400000

6 400000

7 399999

0 600000

1 600000

2 599999

3 599999

4 599999

5 599999

6 599999

7 599999

0 8000000

1 800000

2 800000

3 799999

4 799999

5 799999

6 799999

7 799999

0.00000 0.00100 0.00200 0.00300 0.00400 0.00500



0 00600
0 01200
0 01800
0 03000
0 05400
0 07800
0 10200
0 12600
0 16500
0 22500
0 28500
0 34500
0 40500

y stations

0.18750
0.63750
1.08750

0 00700
0 01300
0 01900
0 03400
0 058OO
0 08200
0 10600
0 13000
0 17500
0 23500
0 29500
0.35500

0.26250
0.71250
1.16250
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0.00800

0.01400

0.02000

0.03800

0.06200

0.08600

0.ii000

0.13500

0.18500

0.24500

0.30500

0.36500

0.33750

0.78750

1.23750

0.00900

0.01500

0.02100

0.04200

0.06600

0.09000

0.11400

0.14100

0.19500

0.25500

0.31500

0.37500

0.41250

0.86250

0.01000

0.01600

0.02300

0.04600

0.07000

0.09400

0 11800

0 14800

0 20500

0 26500

0 32500

0 38500

0.48750

0.93750

0 01100

0 01700

0 02600

0 05000

0 07400

0 09800

0 12200

0 15600

0 21500

0 27500

0 33500

0 39500

0.56250

1.01250
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Program Listings

___,_ '_'re%_t°r_

,nt_usI liot_wooI I3,___,I ,ib

st0_b,I I I fatt_0, I Is'm_0'
casel0.f casel0.f

I
blk.f
lib.f
com

comloc
comint

comtemp
compack

The listings of the following files are given:

int_wing/case 10.f
att_bl/case 10.f

inf_bl/casel 0.f

3d_bl/casel 0.f

lib/blk.f

lib/lib.f

com,comloc

comint,comtemp

compack

Interface program for wing, case 10

Attachment line solution program

for wing, case 10

Side boundary solution program

for wing, case 10

3D boundary layer solution program

for wing, case 10

Subroutines to calculate reference condiions,

solve momentum and energy equations etc.

Library routines

'Include' files containing common blocks and

parameter statements used in the different

programs; array dimensions are set in these files
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